L(s) = 1 | + (1.5 + 0.866i)5-s + (2 − 1.73i)7-s + (1.5 + 2.59i)11-s + (−0.5 − 0.866i)13-s + (−1.5 − 0.866i)17-s + (1.5 − 0.866i)19-s + (1.5 − 2.59i)23-s + (−1 − 1.73i)25-s + (7.5 + 4.33i)29-s + 3.46i·31-s + (4.5 − 0.866i)35-s + (−2.5 − 4.33i)37-s + (4.5 − 2.59i)41-s + (10.5 + 6.06i)43-s + (1.00 − 6.92i)49-s + ⋯ |
L(s) = 1 | + (0.670 + 0.387i)5-s + (0.755 − 0.654i)7-s + (0.452 + 0.783i)11-s + (−0.138 − 0.240i)13-s + (−0.363 − 0.210i)17-s + (0.344 − 0.198i)19-s + (0.312 − 0.541i)23-s + (−0.200 − 0.346i)25-s + (1.39 + 0.804i)29-s + 0.622i·31-s + (0.760 − 0.146i)35-s + (−0.410 − 0.711i)37-s + (0.702 − 0.405i)41-s + (1.60 + 0.924i)43-s + (0.142 − 0.989i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0477i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 + 0.0477i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.462875828\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.462875828\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2 + 1.73i)T \) |
good | 5 | \( 1 + (-1.5 - 0.866i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.5 + 0.866i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.5 + 0.866i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.5 + 2.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-7.5 - 4.33i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 3.46iT - 31T^{2} \) |
| 37 | \( 1 + (2.5 + 4.33i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.5 + 2.59i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-10.5 - 6.06i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 + (4.5 + 2.59i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 12T + 59T^{2} \) |
| 61 | \( 1 + 10T + 61T^{2} \) |
| 67 | \( 1 + 10.3iT - 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + (3.5 - 6.06i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 - 10.3iT - 79T^{2} \) |
| 83 | \( 1 + (7.5 - 12.9i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (1.5 - 0.866i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.5 + 4.33i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.745578407059887458438492819745, −7.915188147452684452951377043894, −7.08349400963915650626717242356, −6.65080728564517468948234053907, −5.63618037162514355172420093297, −4.76356352391838759031409378696, −4.17775461403953723264187139486, −2.93543955322423669200344360772, −2.05465796941622513858995600804, −0.984132388000494402883300128060,
1.05174171415826649175345092694, 2.00302973821320356363173423201, 2.95568603735914240967997455321, 4.13777926104703638514442300344, 4.92299930210691171448404819404, 5.79764630779373397295473798533, 6.16480198992980972697105374008, 7.31494010911493843032727010991, 8.088542776011150673355778695998, 8.861596228876068996262075884445