L(s) = 1 | − 0.784i·5-s + (−2.01 + 1.71i)7-s − 1.41i·11-s + (1.50 + 0.868i)13-s + (−5.43 − 3.13i)17-s + (−0.736 − 1.27i)19-s + 5.60i·23-s + 4.38·25-s + (−3.95 − 6.85i)29-s + (4.20 + 7.29i)31-s + (1.34 + 1.58i)35-s + (3.74 + 6.48i)37-s + (7.19 + 4.15i)41-s + (7.85 − 4.53i)43-s + (0.0550 − 0.0953i)47-s + ⋯ |
L(s) = 1 | − 0.350i·5-s + (−0.762 + 0.646i)7-s − 0.427i·11-s + (0.417 + 0.240i)13-s + (−1.31 − 0.761i)17-s + (−0.168 − 0.292i)19-s + 1.16i·23-s + 0.876·25-s + (−0.734 − 1.27i)29-s + (0.756 + 1.30i)31-s + (0.227 + 0.267i)35-s + (0.615 + 1.06i)37-s + (1.12 + 0.648i)41-s + (1.19 − 0.691i)43-s + (0.00802 − 0.0139i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.921 - 0.387i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.921 - 0.387i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.469652121\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.469652121\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.01 - 1.71i)T \) |
good | 5 | \( 1 + 0.784iT - 5T^{2} \) |
| 11 | \( 1 + 1.41iT - 11T^{2} \) |
| 13 | \( 1 + (-1.50 - 0.868i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (5.43 + 3.13i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.736 + 1.27i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 5.60iT - 23T^{2} \) |
| 29 | \( 1 + (3.95 + 6.85i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.20 - 7.29i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.74 - 6.48i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-7.19 - 4.15i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-7.85 + 4.53i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.0550 + 0.0953i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.28 + 7.42i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.0368 - 0.0637i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.07 - 0.618i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (10.2 - 5.93i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 0.390iT - 71T^{2} \) |
| 73 | \( 1 + (-3.70 - 2.13i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.19 - 3.00i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-7.88 - 13.6i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (6.15 - 3.55i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.89 - 3.40i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.892517715071807431673623385178, −8.191004945692543502384475483821, −7.14666808032914952331478887349, −6.47942921038917820163842672918, −5.78460768191274557303533644575, −4.93127647484625622127951924826, −4.07390701783845963271581459784, −3.05266266770151180612008511352, −2.27396219212254833820405861436, −0.834965575979892278693288719917,
0.63325223169263537377332451540, 2.10879482307516305961270258364, 3.01006955988909201662267150830, 4.06443443861175911175776115751, 4.51232085541905335044301604201, 5.92635643845770718703459479873, 6.34960573710417070098849947955, 7.17714204249382552540868189949, 7.77375588276619703123998796198, 8.865845902482813045367337410994