L(s) = 1 | + 2.81i·5-s + (1.84 + 1.89i)7-s + 2.64i·11-s + (−4.59 − 2.65i)13-s + (2.35 + 1.36i)17-s + (−0.274 − 0.474i)19-s − 2.28i·23-s − 2.90·25-s + (3.72 + 6.45i)29-s + (1.38 + 2.39i)31-s + (−5.32 + 5.19i)35-s + (1.81 + 3.13i)37-s + (7.12 + 4.11i)41-s + (−3.93 + 2.27i)43-s + (−5.61 + 9.72i)47-s + ⋯ |
L(s) = 1 | + 1.25i·5-s + (0.697 + 0.716i)7-s + 0.797i·11-s + (−1.27 − 0.735i)13-s + (0.571 + 0.329i)17-s + (−0.0628 − 0.108i)19-s − 0.476i·23-s − 0.581·25-s + (0.692 + 1.19i)29-s + (0.248 + 0.430i)31-s + (−0.900 + 0.877i)35-s + (0.298 + 0.516i)37-s + (1.11 + 0.642i)41-s + (−0.600 + 0.346i)43-s + (−0.818 + 1.41i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.841 - 0.540i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.841 - 0.540i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.453575132\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.453575132\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-1.84 - 1.89i)T \) |
good | 5 | \( 1 - 2.81iT - 5T^{2} \) |
| 11 | \( 1 - 2.64iT - 11T^{2} \) |
| 13 | \( 1 + (4.59 + 2.65i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.35 - 1.36i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.274 + 0.474i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 2.28iT - 23T^{2} \) |
| 29 | \( 1 + (-3.72 - 6.45i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.38 - 2.39i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.81 - 3.13i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-7.12 - 4.11i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.93 - 2.27i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (5.61 - 9.72i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.53 + 4.38i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.67 + 2.90i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (12.4 + 7.21i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (9.39 - 5.42i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 12.7iT - 71T^{2} \) |
| 73 | \( 1 + (-4.29 - 2.47i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.86 + 2.80i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.719 + 1.24i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (3.24 - 1.87i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-15.7 + 9.09i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.089711231399518531053146045380, −8.014441636087455162050738481731, −7.63995898440245642794128120065, −6.77340789924552777545235924804, −6.11983102581164218133695131530, −5.06376758088181011379023532384, −4.57699720551511820792238085216, −3.08245882629350215811562915812, −2.70710716436142233723106595760, −1.58635669038033285239441641287,
0.45802395500098152035308242392, 1.42741883395922435794047210458, 2.56776692925290395455012039354, 3.91463592538281626658185779313, 4.54444694817893158799555187929, 5.20473047991292282103088978244, 5.97542930004543797326272870883, 7.12106749329877829524293053388, 7.73202555954244585848320809107, 8.395942027716574288136579941245