L(s) = 1 | + 4.46i·5-s + 2.64·7-s − 4.46i·11-s + 7.34i·17-s − 8.64·19-s − 2.88i·23-s − 14.9·25-s − 8.29·31-s + 11.8i·35-s − 3.93·37-s + 2.88i·41-s + 7.00·49-s + 19.9·55-s + 10.2i·71-s − 11.8i·77-s + ⋯ |
L(s) = 1 | + 1.99i·5-s + 0.999·7-s − 1.34i·11-s + 1.78i·17-s − 1.98·19-s − 0.601i·23-s − 2.98·25-s − 1.48·31-s + 1.99i·35-s − 0.647·37-s + 0.450i·41-s + 49-s + 2.68·55-s + 1.21i·71-s − 1.34i·77-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8972819903\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8972819903\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 - 2.64T \) |
good | 5 | \( 1 - 4.46iT - 5T^{2} \) |
| 11 | \( 1 + 4.46iT - 11T^{2} \) |
| 13 | \( 1 - 13T^{2} \) |
| 17 | \( 1 - 7.34iT - 17T^{2} \) |
| 19 | \( 1 + 8.64T + 19T^{2} \) |
| 23 | \( 1 + 2.88iT - 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + 8.29T + 31T^{2} \) |
| 37 | \( 1 + 3.93T + 37T^{2} \) |
| 41 | \( 1 - 2.88iT - 41T^{2} \) |
| 43 | \( 1 - 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 - 10.2iT - 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 - 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 - 14.9iT - 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.843376895432560156434243785953, −8.291680676290566892053322968197, −7.65959884368767755289767480168, −6.66388610303957964213708399664, −6.24085836357607020114012344346, −5.52446079690529930841310761948, −4.09404699640716328795613414980, −3.62489446604934505372337612264, −2.53810728575792409064889053264, −1.79070178846138437458027219830,
0.25751857565385617252215911255, 1.59564993816268375051735941066, 2.14658754433232075816287952598, 3.93958572650166429128345566939, 4.67573949519844408537769600837, 4.98863158800812318920988707241, 5.77322219928957286700049287249, 7.08743612439311620998034489680, 7.67104865278592566441094040829, 8.467042656768785697382189044367