Properties

Label 8-3024e4-1.1-c0e4-0-0
Degree $8$
Conductor $8.362\times 10^{13}$
Sign $1$
Analytic cond. $5.18747$
Root an. cond. $1.22848$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Error: no document with id 246202084 found in table mf_hecke_traces.

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 2·13-s + 2·17-s + 3·25-s − 2·29-s + 2·37-s + 2·41-s − 2·49-s − 2·53-s − 4·65-s − 2·73-s − 4·85-s + 2·89-s + 2·97-s + 2·101-s + 2·109-s − 2·113-s − 121-s − 6·125-s + 127-s + 131-s + 137-s + 139-s + 4·145-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  − 2·5-s + 2·13-s + 2·17-s + 3·25-s − 2·29-s + 2·37-s + 2·41-s − 2·49-s − 2·53-s − 4·65-s − 2·73-s − 4·85-s + 2·89-s + 2·97-s + 2·101-s + 2·109-s − 2·113-s − 121-s − 6·125-s + 127-s + 131-s + 137-s + 139-s + 4·145-s + 149-s + 151-s + 157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{12} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(5.18747\)
Root analytic conductor: \(1.22848\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{12} \cdot 7^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.295377029\)
\(L(\frac12)\) \(\approx\) \(1.295377029\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
good5$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
11$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
13$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
17$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
19$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
23$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
29$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
41$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
43$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
53$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{4} \)
61$C_2$ \( ( 1 + T^{2} )^{4} \)
67$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
71$C_2$ \( ( 1 + T^{2} )^{4} \)
73$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
83$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
89$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
97$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.23855556048393868464401854942, −6.18982039825063660518910486887, −6.17288967725007664859722712857, −5.71821361189017655058669172472, −5.69914134465009183984767388286, −5.30163200589549857175929041222, −5.08918332368591696083888510317, −4.95118348678505293455503965954, −4.76757487236246300674426771469, −4.32801871187835299889323082051, −4.30926189742245819454476845363, −4.08448671174729871691021361369, −3.87019715689865681765213299105, −3.55517409579553639299482338461, −3.48432609803354060336713541422, −3.33404208974456115862302757411, −3.06400758832735126725693764875, −2.76110221533156368073214882061, −2.71036382798636382182032483222, −2.16103565836499962778557059869, −1.79637088202513473231558827874, −1.44414916526342576961560918446, −1.36332432913943315222377182796, −0.831670549984707771698456759737, −0.62954673643284491079388875588, 0.62954673643284491079388875588, 0.831670549984707771698456759737, 1.36332432913943315222377182796, 1.44414916526342576961560918446, 1.79637088202513473231558827874, 2.16103565836499962778557059869, 2.71036382798636382182032483222, 2.76110221533156368073214882061, 3.06400758832735126725693764875, 3.33404208974456115862302757411, 3.48432609803354060336713541422, 3.55517409579553639299482338461, 3.87019715689865681765213299105, 4.08448671174729871691021361369, 4.30926189742245819454476845363, 4.32801871187835299889323082051, 4.76757487236246300674426771469, 4.95118348678505293455503965954, 5.08918332368591696083888510317, 5.30163200589549857175929041222, 5.69914134465009183984767388286, 5.71821361189017655058669172472, 6.17288967725007664859722712857, 6.18982039825063660518910486887, 6.23855556048393868464401854942

Graph of the $Z$-function along the critical line