| L(s) = 1 | + 4-s + 9-s + 6·11-s + 4·29-s + 6·31-s + 36-s + 6·44-s + 2·49-s − 6·59-s + 4·79-s + 6·99-s − 4·101-s + 4·116-s + 21·121-s + 6·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + ⋯ |
| L(s) = 1 | + 4-s + 9-s + 6·11-s + 4·29-s + 6·31-s + 36-s + 6·44-s + 2·49-s − 6·59-s + 4·79-s + 6·99-s − 4·101-s + 4·116-s + 21·121-s + 6·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + 179-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8} \cdot 5^{24}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8} \cdot 5^{24}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(10.36897594\) |
| \(L(\frac12)\) |
\(\approx\) |
\(10.36897594\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \) |
| 3 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \) |
| 5 | \( 1 \) |
| good | 7 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} )^{2} \) |
| 11 | \( ( 1 - T )^{8}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 13 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} )^{2} \) |
| 17 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} )^{2} \) |
| 19 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 23 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} )^{2} \) |
| 29 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{4} \) |
| 31 | \( ( 1 - T )^{8}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 37 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} )^{2} \) |
| 41 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 43 | \( ( 1 + T^{2} )^{8} \) |
| 47 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} )^{2} \) |
| 53 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} )^{2} \) |
| 59 | \( ( 1 + T )^{8}( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \) |
| 61 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 67 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} )^{2} \) |
| 71 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 73 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} )^{2} \) |
| 79 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{4} \) |
| 83 | \( ( 1 + T^{2} )^{4}( 1 - T^{2} + T^{4} - T^{6} + T^{8} ) \) |
| 89 | \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \) |
| 97 | \( ( 1 + T^{2} )^{4}( 1 - T^{2} + T^{4} - T^{6} + T^{8} ) \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−3.98131245235645868755830743702, −3.64192916736800699075887973681, −3.63928840800091695825325124516, −3.51913509247070178003888219752, −3.36175417317806411162937860425, −3.15252157024062543783996654486, −3.14006485253258046542568761449, −2.94744380740675787822612735859, −2.93866743468009594989839000296, −2.90957621706881579655095283458, −2.76584652263129322531534567422, −2.38753895428805540666832907635, −2.34574353190113118426886878855, −2.25853929159703558101205277614, −2.18739472201456455980103222435, −1.94894984183502276494461934129, −1.89268259881723930247573916671, −1.55883008556248954393484735442, −1.37787492530949120533056042002, −1.37059082607324065602644766319, −1.10091802033193046010119143382, −1.07613183304181199692817029994, −1.04748391440211453046418743081, −1.00312013691430597831263110279, −0.813423702081382022553292115054,
0.813423702081382022553292115054, 1.00312013691430597831263110279, 1.04748391440211453046418743081, 1.07613183304181199692817029994, 1.10091802033193046010119143382, 1.37059082607324065602644766319, 1.37787492530949120533056042002, 1.55883008556248954393484735442, 1.89268259881723930247573916671, 1.94894984183502276494461934129, 2.18739472201456455980103222435, 2.25853929159703558101205277614, 2.34574353190113118426886878855, 2.38753895428805540666832907635, 2.76584652263129322531534567422, 2.90957621706881579655095283458, 2.93866743468009594989839000296, 2.94744380740675787822612735859, 3.14006485253258046542568761449, 3.15252157024062543783996654486, 3.36175417317806411162937860425, 3.51913509247070178003888219752, 3.63928840800091695825325124516, 3.64192916736800699075887973681, 3.98131245235645868755830743702
Plot not available for L-functions of degree greater than 10.