| L(s) = 1 | + (0.951 + 0.309i)2-s + (−0.587 + 0.809i)3-s + (0.809 + 0.587i)4-s + (−0.809 + 0.587i)6-s + 1.61i·7-s + (0.587 + 0.809i)8-s + (−0.309 − 0.951i)9-s + (−0.190 + 0.587i)11-s + (−0.951 + 0.309i)12-s + (−0.500 + 1.53i)14-s + (0.309 + 0.951i)16-s − i·18-s + (−1.30 − 0.951i)21-s + (−0.363 + 0.5i)22-s − 24-s + ⋯ |
| L(s) = 1 | + (0.951 + 0.309i)2-s + (−0.587 + 0.809i)3-s + (0.809 + 0.587i)4-s + (−0.809 + 0.587i)6-s + 1.61i·7-s + (0.587 + 0.809i)8-s + (−0.309 − 0.951i)9-s + (−0.190 + 0.587i)11-s + (−0.951 + 0.309i)12-s + (−0.500 + 1.53i)14-s + (0.309 + 0.951i)16-s − i·18-s + (−1.30 − 0.951i)21-s + (−0.363 + 0.5i)22-s − 24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.815 - 0.578i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.815 - 0.578i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.741382408\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.741382408\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.951 - 0.309i)T \) |
| 3 | \( 1 + (0.587 - 0.809i)T \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 - 1.61iT - T^{2} \) |
| 11 | \( 1 + (0.190 - 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (1.61 + 1.17i)T + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (-1.30 + 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.363 - 0.5i)T + (-0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 71 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (-1.90 - 0.618i)T + (0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (0.951 + 1.30i)T + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (-0.951 + 1.30i)T + (-0.309 - 0.951i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.295055156301850846239044460035, −8.420685668826290489575356655706, −7.65260877905248926044104020481, −6.57180799016103597969527139292, −5.91113629483319415675073612259, −5.44920687223336257653792936852, −4.66721895484871155346969741092, −3.93345327672200981512925577165, −2.86996796584863309987214594671, −2.10003122311460387177630029516,
0.848080293916129019972413991473, 1.78580265918927832326272359386, 3.07087341754234339060686095682, 3.85936740757604328308389646387, 4.81665527713586476835013186912, 5.44534901189422857572614896201, 6.42217833680091024759842642537, 6.91206320915450664059549230428, 7.55809956707375184924204596125, 8.296725819229072262623828811244