Properties

Label 2-30-1.1-c17-0-7
Degree $2$
Conductor $30$
Sign $-1$
Analytic cond. $54.9666$
Root an. cond. $7.41394$
Motivic weight $17$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 256·2-s + 6.56e3·3-s + 6.55e4·4-s + 3.90e5·5-s − 1.67e6·6-s + 1.92e6·7-s − 1.67e7·8-s + 4.30e7·9-s − 1.00e8·10-s + 3.52e8·11-s + 4.29e8·12-s − 3.50e9·13-s − 4.93e8·14-s + 2.56e9·15-s + 4.29e9·16-s − 5.49e10·17-s − 1.10e10·18-s + 3.10e10·19-s + 2.56e10·20-s + 1.26e10·21-s − 9.03e10·22-s − 3.16e11·23-s − 1.10e11·24-s + 1.52e11·25-s + 8.96e11·26-s + 2.82e11·27-s + 1.26e11·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.126·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.496·11-s + 0.288·12-s − 1.19·13-s − 0.0894·14-s + 0.258·15-s + 1/4·16-s − 1.91·17-s − 0.235·18-s + 0.420·19-s + 0.223·20-s + 0.0730·21-s − 0.351·22-s − 0.842·23-s − 0.204·24-s + 1/5·25-s + 0.841·26-s + 0.192·27-s + 0.0632·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(18-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s+17/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(30\)    =    \(2 \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(54.9666\)
Root analytic conductor: \(7.41394\)
Motivic weight: \(17\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 30,\ (\ :17/2),\ -1)\)

Particular Values

\(L(9)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{19}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{8} T \)
3 \( 1 - p^{8} T \)
5 \( 1 - p^{8} T \)
good7 \( 1 - 275648 p T + p^{17} T^{2} \)
11 \( 1 - 32089620 p T + p^{17} T^{2} \)
13 \( 1 + 269230786 p T + p^{17} T^{2} \)
17 \( 1 + 54970977894 T + p^{17} T^{2} \)
19 \( 1 - 31092978236 T + p^{17} T^{2} \)
23 \( 1 + 316297396800 T + p^{17} T^{2} \)
29 \( 1 - 3237919791294 T + p^{17} T^{2} \)
31 \( 1 + 6515774619112 T + p^{17} T^{2} \)
37 \( 1 - 26233622989982 T + p^{17} T^{2} \)
41 \( 1 - 44280220470714 T + p^{17} T^{2} \)
43 \( 1 + 6124629403444 T + p^{17} T^{2} \)
47 \( 1 + 44171951954040 T + p^{17} T^{2} \)
53 \( 1 + 489680642744826 T + p^{17} T^{2} \)
59 \( 1 + 820004055924180 T + p^{17} T^{2} \)
61 \( 1 + 2460927715419250 T + p^{17} T^{2} \)
67 \( 1 + 4871518631786044 T + p^{17} T^{2} \)
71 \( 1 - 4555031256305160 T + p^{17} T^{2} \)
73 \( 1 - 1598431505471162 T + p^{17} T^{2} \)
79 \( 1 + 7625872763936872 T + p^{17} T^{2} \)
83 \( 1 + 19662256866055308 T + p^{17} T^{2} \)
89 \( 1 + 15591056930648502 T + p^{17} T^{2} \)
97 \( 1 + 17776788467854078 T + p^{17} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.56753771392665209355136046755, −11.15070717436039773585406765604, −9.786905243774846076752446073283, −8.951312293997072883047531184600, −7.61042655188708599444976505881, −6.37952054659050575999520018745, −4.52251211802375842447117939700, −2.69857510886641711976189221373, −1.66479805116529233065018917827, 0, 1.66479805116529233065018917827, 2.69857510886641711976189221373, 4.52251211802375842447117939700, 6.37952054659050575999520018745, 7.61042655188708599444976505881, 8.951312293997072883047531184600, 9.786905243774846076752446073283, 11.15070717436039773585406765604, 12.56753771392665209355136046755

Graph of the $Z$-function along the critical line