| L(s) = 1 | + (11.3 − 11.3i)2-s + (−19.5 + 138. i)3-s − 256. i·4-s + (−442. − 1.32e3i)5-s + (1.35e3 + 1.79e3i)6-s + (4.22e3 + 4.22e3i)7-s + (−2.89e3 − 2.89e3i)8-s + (−1.89e4 − 5.43e3i)9-s + (−2.00e4 − 9.99e3i)10-s − 6.24e4i·11-s + (3.55e4 + 5.00e3i)12-s + (1.80e4 − 1.80e4i)13-s + 9.56e4·14-s + (1.92e5 − 3.55e4i)15-s − 6.55e4·16-s + (3.63e5 − 3.63e5i)17-s + ⋯ |
| L(s) = 1 | + (0.499 − 0.499i)2-s + (−0.139 + 0.990i)3-s − 0.500i·4-s + (−0.316 − 0.948i)5-s + (0.425 + 0.564i)6-s + (0.665 + 0.665i)7-s + (−0.250 − 0.250i)8-s + (−0.961 − 0.275i)9-s + (−0.632 − 0.315i)10-s − 1.28i·11-s + (0.495 + 0.0696i)12-s + (0.175 − 0.175i)13-s + 0.665·14-s + (0.983 − 0.181i)15-s − 0.250·16-s + (1.05 − 1.05i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0494 + 0.998i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.0494 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(5)\) |
\(\approx\) |
\(1.30464 - 1.37083i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.30464 - 1.37083i\) |
| \(L(\frac{11}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-11.3 + 11.3i)T \) |
| 3 | \( 1 + (19.5 - 138. i)T \) |
| 5 | \( 1 + (442. + 1.32e3i)T \) |
| good | 7 | \( 1 + (-4.22e3 - 4.22e3i)T + 4.03e7iT^{2} \) |
| 11 | \( 1 + 6.24e4iT - 2.35e9T^{2} \) |
| 13 | \( 1 + (-1.80e4 + 1.80e4i)T - 1.06e10iT^{2} \) |
| 17 | \( 1 + (-3.63e5 + 3.63e5i)T - 1.18e11iT^{2} \) |
| 19 | \( 1 + 9.79e5iT - 3.22e11T^{2} \) |
| 23 | \( 1 + (2.60e5 + 2.60e5i)T + 1.80e12iT^{2} \) |
| 29 | \( 1 - 1.27e6T + 1.45e13T^{2} \) |
| 31 | \( 1 + 6.88e6T + 2.64e13T^{2} \) |
| 37 | \( 1 + (-1.46e7 - 1.46e7i)T + 1.29e14iT^{2} \) |
| 41 | \( 1 - 3.70e6iT - 3.27e14T^{2} \) |
| 43 | \( 1 + (5.49e6 - 5.49e6i)T - 5.02e14iT^{2} \) |
| 47 | \( 1 + (1.61e7 - 1.61e7i)T - 1.11e15iT^{2} \) |
| 53 | \( 1 + (-2.23e6 - 2.23e6i)T + 3.29e15iT^{2} \) |
| 59 | \( 1 - 1.50e8T + 8.66e15T^{2} \) |
| 61 | \( 1 + 3.47e7T + 1.16e16T^{2} \) |
| 67 | \( 1 + (1.76e8 + 1.76e8i)T + 2.72e16iT^{2} \) |
| 71 | \( 1 - 4.39e7iT - 4.58e16T^{2} \) |
| 73 | \( 1 + (1.17e8 - 1.17e8i)T - 5.88e16iT^{2} \) |
| 79 | \( 1 + 5.08e6iT - 1.19e17T^{2} \) |
| 83 | \( 1 + (-1.10e8 - 1.10e8i)T + 1.86e17iT^{2} \) |
| 89 | \( 1 + 3.73e8T + 3.50e17T^{2} \) |
| 97 | \( 1 + (-5.17e8 - 5.17e8i)T + 7.60e17iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.67756752194833547219766290212, −13.38438367511279033147188427994, −11.80190152642581466810235116517, −11.17046450203583869502792423943, −9.447248328147675297337576125338, −8.414237774439749222761761985628, −5.60292416352431892292865281479, −4.71194661034798062737283476159, −3.06758397930581695827305235107, −0.67222279254477016975953185876,
1.79924130853802699110250050116, 3.84703503873254816560734050343, 5.87436073376251704965679561343, 7.27162388140060938813827403833, 7.923971245363949655210444743046, 10.41096090372367200400147774492, 11.80060766447820299502734862538, 12.82821240472228115526980350064, 14.39379975090235428092645426214, 14.67369481028152164321006425148