Properties

Label 2-30-1.1-c9-0-1
Degree $2$
Conductor $30$
Sign $1$
Analytic cond. $15.4510$
Root an. cond. $3.93078$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·2-s + 81·3-s + 256·4-s − 625·5-s − 1.29e3·6-s + 7.19e3·7-s − 4.09e3·8-s + 6.56e3·9-s + 1.00e4·10-s − 4.56e4·11-s + 2.07e4·12-s − 3.40e4·13-s − 1.15e5·14-s − 5.06e4·15-s + 6.55e4·16-s + 4.24e5·17-s − 1.04e5·18-s + 9.30e5·19-s − 1.60e5·20-s + 5.82e5·21-s + 7.29e5·22-s + 1.57e6·23-s − 3.31e5·24-s + 3.90e5·25-s + 5.45e5·26-s + 5.31e5·27-s + 1.84e6·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 1.13·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.939·11-s + 0.288·12-s − 0.330·13-s − 0.801·14-s − 0.258·15-s + 1/4·16-s + 1.23·17-s − 0.235·18-s + 1.63·19-s − 0.223·20-s + 0.654·21-s + 0.664·22-s + 1.17·23-s − 0.204·24-s + 1/5·25-s + 0.233·26-s + 0.192·27-s + 0.566·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(30\)    =    \(2 \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(15.4510\)
Root analytic conductor: \(3.93078\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 30,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.704964451\)
\(L(\frac12)\) \(\approx\) \(1.704964451\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{4} T \)
3 \( 1 - p^{4} T \)
5 \( 1 + p^{4} T \)
good7 \( 1 - 1028 p T + p^{9} T^{2} \)
11 \( 1 + 45600 T + p^{9} T^{2} \)
13 \( 1 + 34078 T + p^{9} T^{2} \)
17 \( 1 - 424326 T + p^{9} T^{2} \)
19 \( 1 - 930716 T + p^{9} T^{2} \)
23 \( 1 - 1572000 T + p^{9} T^{2} \)
29 \( 1 + 864486 T + p^{9} T^{2} \)
31 \( 1 - 8703368 T + p^{9} T^{2} \)
37 \( 1 + 7526878 T + p^{9} T^{2} \)
41 \( 1 - 8562234 T + p^{9} T^{2} \)
43 \( 1 - 32831996 T + p^{9} T^{2} \)
47 \( 1 + 38536800 T + p^{9} T^{2} \)
53 \( 1 + 35746086 T + p^{9} T^{2} \)
59 \( 1 + 77109600 T + p^{9} T^{2} \)
61 \( 1 - 18400790 T + p^{9} T^{2} \)
67 \( 1 + 142510084 T + p^{9} T^{2} \)
71 \( 1 - 318643200 T + p^{9} T^{2} \)
73 \( 1 + 30899518 T + p^{9} T^{2} \)
79 \( 1 - 603013448 T + p^{9} T^{2} \)
83 \( 1 + 493844148 T + p^{9} T^{2} \)
89 \( 1 + 92882862 T + p^{9} T^{2} \)
97 \( 1 + 755725438 T + p^{9} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.06326510601418622809159489445, −13.95051175285088843774526668124, −12.23776974550312668595683686262, −11.01206987575214618807634235881, −9.666603404397369085860784432838, −8.152671849562915419173326166771, −7.47706475094358706311570516170, −5.08606514072376439525867334282, −2.94469963642540191993849225605, −1.12265695968181164556022976572, 1.12265695968181164556022976572, 2.94469963642540191993849225605, 5.08606514072376439525867334282, 7.47706475094358706311570516170, 8.152671849562915419173326166771, 9.666603404397369085860784432838, 11.01206987575214618807634235881, 12.23776974550312668595683686262, 13.95051175285088843774526668124, 15.06326510601418622809159489445

Graph of the $Z$-function along the critical line