L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (−0.866 + 0.5i)5-s + (1.10 + 0.637i)7-s + 0.999·8-s − 0.999i·10-s + (2.15 + 2.51i)11-s + (−1.12 + 0.651i)13-s + (−1.10 + 0.637i)14-s + (−0.5 + 0.866i)16-s + 3.37·17-s − 5.39i·19-s + (0.866 + 0.499i)20-s + (−3.25 + 0.611i)22-s + (−1.82 + 1.05i)23-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.387 + 0.223i)5-s + (0.417 + 0.240i)7-s + 0.353·8-s − 0.316i·10-s + (0.650 + 0.759i)11-s + (−0.313 + 0.180i)13-s + (−0.295 + 0.170i)14-s + (−0.125 + 0.216i)16-s + 0.818·17-s − 1.23i·19-s + (0.193 + 0.111i)20-s + (−0.695 + 0.130i)22-s + (−0.381 + 0.220i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2970 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.277 - 0.960i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2970 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.277 - 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.357847771\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.357847771\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + (-2.15 - 2.51i)T \) |
good | 7 | \( 1 + (-1.10 - 0.637i)T + (3.5 + 6.06i)T^{2} \) |
| 13 | \( 1 + (1.12 - 0.651i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 3.37T + 17T^{2} \) |
| 19 | \( 1 + 5.39iT - 19T^{2} \) |
| 23 | \( 1 + (1.82 - 1.05i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.37 - 4.11i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.73 - 3.00i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 9.60T + 37T^{2} \) |
| 41 | \( 1 + (-4.86 - 8.41i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (8.29 + 4.79i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-6.51 - 3.76i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 5.11iT - 53T^{2} \) |
| 59 | \( 1 + (-2.49 + 1.44i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.52 + 2.61i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.12 - 5.40i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 10.3iT - 71T^{2} \) |
| 73 | \( 1 + 14.1iT - 73T^{2} \) |
| 79 | \( 1 + (-5.22 - 3.01i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.809 - 1.40i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 8.53iT - 89T^{2} \) |
| 97 | \( 1 + (-5.59 + 9.69i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.014557327907510808639559293679, −8.035601728933992894298371540102, −7.51833714704997544003570913963, −6.80612369647990736336747825629, −6.10649395335543626419062542002, −5.03599501118875268692842163357, −4.53136412600473043331574634415, −3.44208964262719547148922936510, −2.26740561147183655876423355957, −1.07622900253065210621014271652,
0.59155032585783790288069832178, 1.59359972122749886705462359719, 2.77795790607107163392785851283, 3.81225051171735793754693016021, 4.26239955799107916289663427670, 5.46399845958673910856414764456, 6.14430152497880994264668567068, 7.30208446702329889241409344634, 8.016980796033853568087208973320, 8.372606188262293210664626286216