L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.866 − 0.5i)5-s + (3.18 + 1.83i)7-s + 0.999·8-s + 0.999i·10-s + (2.35 − 2.34i)11-s + (−1.88 + 1.09i)13-s + (−3.18 + 1.83i)14-s + (−0.5 + 0.866i)16-s + 1.68·17-s − 7.86i·19-s + (−0.866 − 0.499i)20-s + (0.851 + 3.20i)22-s + (4.34 − 2.50i)23-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.387 − 0.223i)5-s + (1.20 + 0.694i)7-s + 0.353·8-s + 0.316i·10-s + (0.708 − 0.705i)11-s + (−0.524 + 0.302i)13-s + (−0.851 + 0.491i)14-s + (−0.125 + 0.216i)16-s + 0.408·17-s − 1.80i·19-s + (−0.193 − 0.111i)20-s + (0.181 + 0.683i)22-s + (0.905 − 0.522i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2970 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0847i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2970 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 + 0.0847i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.927448377\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.927448377\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (-2.35 + 2.34i)T \) |
good | 7 | \( 1 + (-3.18 - 1.83i)T + (3.5 + 6.06i)T^{2} \) |
| 13 | \( 1 + (1.88 - 1.09i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 1.68T + 17T^{2} \) |
| 19 | \( 1 + 7.86iT - 19T^{2} \) |
| 23 | \( 1 + (-4.34 + 2.50i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.65 + 6.33i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.78 - 4.82i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 9.84T + 37T^{2} \) |
| 41 | \( 1 + (2.91 + 5.05i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.89 - 1.67i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.46 + 2.57i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 4.66iT - 53T^{2} \) |
| 59 | \( 1 + (-12.1 + 6.99i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (7.93 + 4.57i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.87 - 11.9i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 7.93iT - 71T^{2} \) |
| 73 | \( 1 - 4.80iT - 73T^{2} \) |
| 79 | \( 1 + (12.4 + 7.16i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.79 - 4.83i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 12.9iT - 89T^{2} \) |
| 97 | \( 1 + (7.38 - 12.7i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.509748313685952159357154458074, −8.365437679908905635156141821255, −7.02991286906449793694517113768, −6.69573185898411308032418682196, −5.53998028948178335134264575402, −5.07662962581277053875191950049, −4.34984511416079793780781135334, −2.90815778965250082271852099859, −1.89781763595628667648061677586, −0.77238325750220096535108057808,
1.26754657742110019205044555767, 1.75922144115336477756408703945, 3.04733853571092123159996009211, 3.95472697913911701152504534179, 4.77000769951879311002939784649, 5.51300769472512205537001974444, 6.68202863882625786767698911999, 7.44279559341187818062177300910, 7.987470202224423863703575570457, 8.793629029311416075546347849111