L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (−0.866 − 0.5i)5-s + (−1.01 + 0.585i)7-s + 0.999·8-s + 0.999i·10-s + (0.345 + 3.29i)11-s + (−4.36 − 2.52i)13-s + (1.01 + 0.585i)14-s + (−0.5 − 0.866i)16-s + 3.55·17-s − 6.12i·19-s + (0.866 − 0.499i)20-s + (2.68 − 1.94i)22-s + (0.456 + 0.263i)23-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.387 − 0.223i)5-s + (−0.383 + 0.221i)7-s + 0.353·8-s + 0.316i·10-s + (0.104 + 0.994i)11-s + (−1.21 − 0.699i)13-s + (0.271 + 0.156i)14-s + (−0.125 − 0.216i)16-s + 0.861·17-s − 1.40i·19-s + (0.193 − 0.111i)20-s + (0.572 − 0.415i)22-s + (0.0950 + 0.0549i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2970 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.296 - 0.954i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2970 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.296 - 0.954i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5602209301\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5602209301\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 + (-0.345 - 3.29i)T \) |
good | 7 | \( 1 + (1.01 - 0.585i)T + (3.5 - 6.06i)T^{2} \) |
| 13 | \( 1 + (4.36 + 2.52i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 3.55T + 17T^{2} \) |
| 19 | \( 1 + 6.12iT - 19T^{2} \) |
| 23 | \( 1 + (-0.456 - 0.263i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.386 + 0.670i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.54 + 4.41i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 3.26T + 37T^{2} \) |
| 41 | \( 1 + (1.05 - 1.83i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.762 + 0.440i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (6.56 - 3.78i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 1.36iT - 53T^{2} \) |
| 59 | \( 1 + (-10.8 - 6.28i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.48 - 2.58i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.70 - 11.6i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 13.0iT - 71T^{2} \) |
| 73 | \( 1 + 4.47iT - 73T^{2} \) |
| 79 | \( 1 + (5.60 - 3.23i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (7.22 + 12.5i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 13.9iT - 89T^{2} \) |
| 97 | \( 1 + (2.49 + 4.32i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.067697252959140572059134304680, −8.149646486581559174982702956546, −7.47922084571660049338815086594, −6.92093258811029644191323079521, −5.71670693632795863934368686841, −4.82794945080328752789151143615, −4.21489920740228987944322862163, −2.98802906958526622316418291305, −2.45275931707042244963393386219, −1.03668027149828637820733498788,
0.23407948842954465895156279485, 1.64345516672139482482987158319, 3.05584105241563406815642053765, 3.80447721949718724568830964605, 4.83656697818331908899792073334, 5.65187527545156569945328776983, 6.46852505655065363757523980514, 7.07678193510968766671753751801, 7.904532710441110062963716781378, 8.370084417514777960374438968290