L(s) = 1 | + 1.93·3-s − 1.58i·5-s + 3.41·7-s + 0.729·9-s − 2.90·11-s + 0.613i·13-s − 3.06i·15-s + 2.09i·17-s − 6.72i·19-s + 6.58·21-s + 6.51i·23-s + 2.47·25-s − 4.38·27-s + 7.97i·29-s − 5.35i·31-s + ⋯ |
L(s) = 1 | + 1.11·3-s − 0.710i·5-s + 1.28·7-s + 0.243·9-s − 0.876·11-s + 0.170i·13-s − 0.791i·15-s + 0.507i·17-s − 1.54i·19-s + 1.43·21-s + 1.35i·23-s + 0.495·25-s − 0.843·27-s + 1.48i·29-s − 0.962i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.945 + 0.324i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.945 + 0.324i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.85657 - 0.309675i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.85657 - 0.309675i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 37 | \( 1 + (1.97 - 5.75i)T \) |
good | 3 | \( 1 - 1.93T + 3T^{2} \) |
| 5 | \( 1 + 1.58iT - 5T^{2} \) |
| 7 | \( 1 - 3.41T + 7T^{2} \) |
| 11 | \( 1 + 2.90T + 11T^{2} \) |
| 13 | \( 1 - 0.613iT - 13T^{2} \) |
| 17 | \( 1 - 2.09iT - 17T^{2} \) |
| 19 | \( 1 + 6.72iT - 19T^{2} \) |
| 23 | \( 1 - 6.51iT - 23T^{2} \) |
| 29 | \( 1 - 7.97iT - 29T^{2} \) |
| 31 | \( 1 + 5.35iT - 31T^{2} \) |
| 41 | \( 1 + 0.755T + 41T^{2} \) |
| 43 | \( 1 + 0.229iT - 43T^{2} \) |
| 47 | \( 1 + 3.95T + 47T^{2} \) |
| 53 | \( 1 + 2.23T + 53T^{2} \) |
| 59 | \( 1 + 10.0iT - 59T^{2} \) |
| 61 | \( 1 - 3.89iT - 61T^{2} \) |
| 67 | \( 1 + 3.89T + 67T^{2} \) |
| 71 | \( 1 - 2.94T + 71T^{2} \) |
| 73 | \( 1 + 8.08T + 73T^{2} \) |
| 79 | \( 1 - 1.03iT - 79T^{2} \) |
| 83 | \( 1 + 17.0T + 83T^{2} \) |
| 89 | \( 1 - 8.80iT - 89T^{2} \) |
| 97 | \( 1 + 3.45iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.60998015942984896577789640062, −10.88825567363426761457869318989, −9.549654531418198618059841106692, −8.675759068979466972584660547367, −8.144882607714899551131374154214, −7.20974887065391294115681163674, −5.39561936553429542504530039067, −4.59814935992063566343153686191, −3.07724444741790325675617359648, −1.71235094011254318496823660981,
2.09764002429421684948792833945, 3.12186639027770530718832129651, 4.52126739851937292145703771364, 5.81132865894193925594106938566, 7.31412064559313375831605264263, 8.079468114572666896856347161717, 8.670065134536922244999564868212, 10.03943609940285427092517838800, 10.75268627347561952570839289213, 11.73440777077177379448289671789