L(s) = 1 | + (−0.520 + 1.31i)2-s + (−1.99 − 2.37i)3-s + (−1.45 − 1.36i)4-s + (1.81 − 0.844i)5-s + (4.15 − 1.38i)6-s + (0.0212 − 0.0584i)7-s + (2.55 − 1.20i)8-s + (−1.14 + 6.50i)9-s + (0.167 + 2.81i)10-s + (−2.76 − 1.59i)11-s + (−0.346 + 6.18i)12-s + (−3.32 − 2.32i)13-s + (0.0657 + 0.0584i)14-s + (−5.61 − 2.61i)15-s + (0.250 + 3.99i)16-s + (0.380 − 0.266i)17-s + ⋯ |
L(s) = 1 | + (−0.368 + 0.929i)2-s + (−1.15 − 1.37i)3-s + (−0.728 − 0.684i)4-s + (0.809 − 0.377i)5-s + (1.69 − 0.564i)6-s + (0.00804 − 0.0220i)7-s + (0.904 − 0.425i)8-s + (−0.382 + 2.16i)9-s + (0.0529 + 0.891i)10-s + (−0.832 − 0.480i)11-s + (−0.0999 + 1.78i)12-s + (−0.922 − 0.646i)13-s + (0.0175 + 0.0156i)14-s + (−1.44 − 0.675i)15-s + (0.0627 + 0.998i)16-s + (0.0923 − 0.0646i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.783 + 0.621i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.783 + 0.621i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.120056 - 0.344200i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.120056 - 0.344200i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.520 - 1.31i)T \) |
| 37 | \( 1 + (-5.84 - 1.66i)T \) |
good | 3 | \( 1 + (1.99 + 2.37i)T + (-0.520 + 2.95i)T^{2} \) |
| 5 | \( 1 + (-1.81 + 0.844i)T + (3.21 - 3.83i)T^{2} \) |
| 7 | \( 1 + (-0.0212 + 0.0584i)T + (-5.36 - 4.49i)T^{2} \) |
| 11 | \( 1 + (2.76 + 1.59i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (3.32 + 2.32i)T + (4.44 + 12.2i)T^{2} \) |
| 17 | \( 1 + (-0.380 + 0.266i)T + (5.81 - 15.9i)T^{2} \) |
| 19 | \( 1 + (2.95 + 0.258i)T + (18.7 + 3.29i)T^{2} \) |
| 23 | \( 1 + (1.78 + 0.477i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (2.62 - 0.702i)T + (25.1 - 14.5i)T^{2} \) |
| 31 | \( 1 + (6.47 + 6.47i)T + 31iT^{2} \) |
| 41 | \( 1 + (8.93 - 1.57i)T + (38.5 - 14.0i)T^{2} \) |
| 43 | \( 1 + (-7.66 - 7.66i)T + 43iT^{2} \) |
| 47 | \( 1 + (-3.88 + 2.24i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.44 + 12.2i)T + (-40.6 + 34.0i)T^{2} \) |
| 59 | \( 1 + (10.0 + 4.69i)T + (37.9 + 45.1i)T^{2} \) |
| 61 | \( 1 + (-7.59 + 10.8i)T + (-20.8 - 57.3i)T^{2} \) |
| 67 | \( 1 + (1.84 - 5.07i)T + (-51.3 - 43.0i)T^{2} \) |
| 71 | \( 1 + (-3.29 - 3.93i)T + (-12.3 + 69.9i)T^{2} \) |
| 73 | \( 1 + 12.1iT - 73T^{2} \) |
| 79 | \( 1 + (-5.48 + 2.55i)T + (50.7 - 60.5i)T^{2} \) |
| 83 | \( 1 + (0.0367 - 0.208i)T + (-77.9 - 28.3i)T^{2} \) |
| 89 | \( 1 + (-4.07 + 8.74i)T + (-57.2 - 68.1i)T^{2} \) |
| 97 | \( 1 + (0.678 - 2.53i)T + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.35496022067860920194846765330, −10.45730486160297790547491243090, −9.451727683068785513372364572263, −8.048083357134723717576641176162, −7.50597478686248736877886008487, −6.34419411025583289389922194741, −5.67824655857317753969936841947, −4.97557211813862004507963920470, −1.98055649221455387126155681893, −0.33353149571140374478749806585,
2.33295020771456267058695574975, 3.94071047033289816794258627455, 4.90711103482798481557915124067, 5.81740879549964214159798857472, 7.27945041224707412553467241721, 8.971163680626607786163875779498, 9.697730014487117596336771124385, 10.42800358637357266174136960894, 10.80216658139637064708001412128, 11.94442480914679501549742122719