L(s) = 1 | + 1.60·5-s + 0.181i·7-s − 2.05i·11-s + 0.949i·13-s − 3.83i·17-s − 6.15i·19-s + 4.73·23-s − 2.42·25-s − 3.26i·29-s − 7.12·31-s + 0.291i·35-s − 4.42·37-s + (0.372 + 6.39i)41-s − 7.54·43-s − 10.2i·47-s + ⋯ |
L(s) = 1 | + 0.717·5-s + 0.0687i·7-s − 0.618i·11-s + 0.263i·13-s − 0.930i·17-s − 1.41i·19-s + 0.987·23-s − 0.484·25-s − 0.605i·29-s − 1.28·31-s + 0.0493i·35-s − 0.727·37-s + (0.0582 + 0.998i)41-s − 1.15·43-s − 1.49i·47-s + ⋯ |
Λ(s)=(=(2952s/2ΓC(s)L(s)(0.0582+0.998i)Λ(2−s)
Λ(s)=(=(2952s/2ΓC(s+1/2)L(s)(0.0582+0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
2952
= 23⋅32⋅41
|
Sign: |
0.0582+0.998i
|
Analytic conductor: |
23.5718 |
Root analytic conductor: |
4.85508 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2952(2377,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2952, ( :1/2), 0.0582+0.998i)
|
Particular Values
L(1) |
≈ |
1.689830502 |
L(21) |
≈ |
1.689830502 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 41 | 1+(−0.372−6.39i)T |
good | 5 | 1−1.60T+5T2 |
| 7 | 1−0.181iT−7T2 |
| 11 | 1+2.05iT−11T2 |
| 13 | 1−0.949iT−13T2 |
| 17 | 1+3.83iT−17T2 |
| 19 | 1+6.15iT−19T2 |
| 23 | 1−4.73T+23T2 |
| 29 | 1+3.26iT−29T2 |
| 31 | 1+7.12T+31T2 |
| 37 | 1+4.42T+37T2 |
| 43 | 1+7.54T+43T2 |
| 47 | 1+10.2iT−47T2 |
| 53 | 1+0.554iT−53T2 |
| 59 | 1−11.6T+59T2 |
| 61 | 1+9.80T+61T2 |
| 67 | 1+7.91iT−67T2 |
| 71 | 1+3.73iT−71T2 |
| 73 | 1−12.1T+73T2 |
| 79 | 1+8.84iT−79T2 |
| 83 | 1−1.70T+83T2 |
| 89 | 1+4.76iT−89T2 |
| 97 | 1−9.39iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.850463946504120442320849357879, −7.76628801802387251352102866586, −6.95953422222405964965002127268, −6.36977612389958824043747592158, −5.35658736002669903451218926146, −4.92911506209472018646943843468, −3.69990777061748047402783835077, −2.79364610578420736463928388320, −1.89260644021547095338657760799, −0.52066281085968050218160781695,
1.40268589954349397974121017253, 2.14981895577315241833913710910, 3.39042608811034907437630557455, 4.14137429206870761199712459216, 5.30763948230355957160423278126, 5.73829288538697141505940267409, 6.67613592817155349022040418563, 7.38821520147804814871590982405, 8.207073894096243505073139921294, 8.968720457608307240040229669649