L(s) = 1 | + (−2 − 3.46i)2-s + (4.5 − 7.79i)3-s + (−7.99 + 13.8i)4-s + (33 + 57.1i)5-s − 36·6-s + 63.9·8-s + (−40.5 − 70.1i)9-s + (132 − 228. i)10-s + (30 − 51.9i)11-s + (72 + 124. i)12-s − 658·13-s + 594·15-s + (−128 − 221. i)16-s + (207 − 358. i)17-s + (−162 + 280. i)18-s + (−478 − 827. i)19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.590 + 1.02i)5-s − 0.408·6-s + 0.353·8-s + (−0.166 − 0.288i)9-s + (0.417 − 0.722i)10-s + (0.0747 − 0.129i)11-s + (0.144 + 0.249i)12-s − 1.07·13-s + 0.681·15-s + (−0.125 − 0.216i)16-s + (0.173 − 0.300i)17-s + (−0.117 + 0.204i)18-s + (−0.303 − 0.526i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.929008316\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.929008316\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2 + 3.46i)T \) |
| 3 | \( 1 + (-4.5 + 7.79i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-33 - 57.1i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-30 + 51.9i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 + 658T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-207 + 358. i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (478 + 827. i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (300 + 519. i)T + (-3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 - 5.57e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-1.79e3 + 3.11e3i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-4.22e3 - 7.32e3i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 - 1.91e4T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.33e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-9.84e3 - 1.70e4i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-1.56e4 + 2.70e4i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (1.31e4 - 2.28e4i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-1.55e4 - 2.69e4i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (-8.40e3 + 1.45e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 - 6.12e3T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-1.27e4 + 2.21e4i)T + (-1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (3.72e4 + 6.44e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 + 6.46e3T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-1.63e4 - 2.83e4i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 - 1.66e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.70164319644372487192447447604, −9.931922611168136564484775835678, −9.087613752775398076559848473026, −7.88039616301310903751840366734, −7.01913305727998631326584564022, −6.04566427734473286658921363417, −4.46568161348973520931320141865, −2.84261415547512086719710531418, −2.36407344547398290466223044517, −0.76277420677127378551363501070,
0.890096801724721471513467442261, 2.33572313192927834727374480225, 4.17554912735542614155739267163, 5.10197456290328277513606892993, 5.98789510655876439136376803698, 7.35466287442912369450250878399, 8.345583650632216559569705467367, 9.182239136121496288372983356757, 9.829114770807773502981612412812, 10.70751959053974537890711761330