Properties

Label 2-2925-5.4-c1-0-65
Degree $2$
Conductor $2925$
Sign $0.894 + 0.447i$
Analytic cond. $23.3562$
Root an. cond. $4.83282$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73i·2-s − 0.999·4-s + 2i·7-s + 1.73i·8-s − 3.46·11-s i·13-s − 3.46·14-s − 5·16-s − 6.92i·17-s − 2·19-s − 5.99i·22-s − 6.92i·23-s + 1.73·26-s − 1.99i·28-s − 6.92·29-s + ⋯
L(s)  = 1  + 1.22i·2-s − 0.499·4-s + 0.755i·7-s + 0.612i·8-s − 1.04·11-s − 0.277i·13-s − 0.925·14-s − 1.25·16-s − 1.68i·17-s − 0.458·19-s − 1.27i·22-s − 1.44i·23-s + 0.339·26-s − 0.377i·28-s − 1.28·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2925\)    =    \(3^{2} \cdot 5^{2} \cdot 13\)
Sign: $0.894 + 0.447i$
Analytic conductor: \(23.3562\)
Root analytic conductor: \(4.83282\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2925} (2224, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2925,\ (\ :1/2),\ 0.894 + 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7018329913\)
\(L(\frac12)\) \(\approx\) \(0.7018329913\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
13 \( 1 + iT \)
good2 \( 1 - 1.73iT - 2T^{2} \)
7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 + 3.46T + 11T^{2} \)
17 \( 1 + 6.92iT - 17T^{2} \)
19 \( 1 + 2T + 19T^{2} \)
23 \( 1 + 6.92iT - 23T^{2} \)
29 \( 1 + 6.92T + 29T^{2} \)
31 \( 1 - 2T + 31T^{2} \)
37 \( 1 - 2iT - 37T^{2} \)
41 \( 1 - 6.92T + 41T^{2} \)
43 \( 1 + 8iT - 43T^{2} \)
47 \( 1 + 10.3iT - 47T^{2} \)
53 \( 1 - 53T^{2} \)
59 \( 1 + 3.46T + 59T^{2} \)
61 \( 1 + 10T + 61T^{2} \)
67 \( 1 - 14iT - 67T^{2} \)
71 \( 1 - 3.46T + 71T^{2} \)
73 \( 1 - 10iT - 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 + 10.3iT - 83T^{2} \)
89 \( 1 + 6.92T + 89T^{2} \)
97 \( 1 + 10iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.615513087020081902334949504462, −7.78896175465236078946199135918, −7.22121478306033271041096518970, −6.49061040860035439941711849030, −5.55759045154070788979653439559, −5.24658863438574082178813398988, −4.31311113416572596671201352315, −2.79185469229515332739538860600, −2.28625621297087126292755738529, −0.21417575453941567693903686781, 1.27491567267923539406844613668, 2.08159230916042271230957987179, 3.13777105191266907660845842579, 3.88969032024867705437802038694, 4.55106774943340329366770566473, 5.74710096825923939908363690228, 6.47485109495983676461380009415, 7.57820437639456591807855122533, 7.919435399262465262133380256516, 9.169846804498099158706982574420

Graph of the $Z$-function along the critical line