L(s) = 1 | − i·3-s + (0.866 − 0.5i)4-s − 9-s + (−0.366 − 1.36i)11-s + (−0.5 − 0.866i)12-s + (−0.866 + 0.5i)13-s + (0.499 − 0.866i)16-s + 17-s + (1 + i)19-s + (−0.5 − 0.866i)23-s + i·27-s + (0.5 − 0.866i)29-s + (−1.36 + 0.366i)33-s + (−0.866 + 0.5i)36-s + (−1 − i)37-s + ⋯ |
L(s) = 1 | − i·3-s + (0.866 − 0.5i)4-s − 9-s + (−0.366 − 1.36i)11-s + (−0.5 − 0.866i)12-s + (−0.866 + 0.5i)13-s + (0.499 − 0.866i)16-s + 17-s + (1 + i)19-s + (−0.5 − 0.866i)23-s + i·27-s + (0.5 − 0.866i)29-s + (−1.36 + 0.366i)33-s + (−0.866 + 0.5i)36-s + (−1 − i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.504 + 0.863i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.504 + 0.863i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.360205341\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.360205341\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (0.866 - 0.5i)T \) |
good | 2 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 7 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 - T + T^{2} \) |
| 19 | \( 1 + (-1 - i)T + iT^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 37 | \( 1 + (1 + i)T + iT^{2} \) |
| 41 | \( 1 + (-0.366 + 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (1.36 - 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + iT - T^{2} \) |
| 59 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 + (-1 - i)T + iT^{2} \) |
| 73 | \( 1 + (-1 - i)T + iT^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 89 | \( 1 + (1 - i)T - iT^{2} \) |
| 97 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.315222063323917573243149809035, −7.946644128802348239789313131029, −7.12068747176403167873688444425, −6.47099567083235381952917459187, −5.67076695795232052900061332003, −5.29214090971954997058631704144, −3.63327893809342699536444885993, −2.77435342861800200094304102167, −1.95009505503169985153488225274, −0.820728167273032855232977630887,
1.80380979485841950187107474127, 3.00647933460644204504636035842, 3.32358608725163292942756334158, 4.74426520146407183586385938776, 5.06402006879757947657063656468, 6.12073071913905429490213162599, 7.11513337470909873168045931599, 7.64107208072722631448034000518, 8.327877111973831973535205767183, 9.445270006806308735419648163106