L(s) = 1 | + 2·7-s + 3·9-s − 5.29i·11-s + 2·13-s − 5.29i·19-s − 6·23-s + (−1 − 5.29i)29-s − 5.29i·31-s + 10.5i·43-s − 10.5i·47-s − 3·49-s + 2·53-s + 10.5i·61-s + 6·63-s − 10·67-s + ⋯ |
L(s) = 1 | + 0.755·7-s + 9-s − 1.59i·11-s + 0.554·13-s − 1.21i·19-s − 1.25·23-s + (−0.185 − 0.982i)29-s − 0.950i·31-s + 1.61i·43-s − 1.54i·47-s − 0.428·49-s + 0.274·53-s + 1.35i·61-s + 0.755·63-s − 1.22·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.185 + 0.982i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.185 + 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.988394511\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.988394511\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 29 | \( 1 + (1 + 5.29i)T \) |
good | 3 | \( 1 - 3T^{2} \) |
| 7 | \( 1 - 2T + 7T^{2} \) |
| 11 | \( 1 + 5.29iT - 11T^{2} \) |
| 13 | \( 1 - 2T + 13T^{2} \) |
| 17 | \( 1 - 17T^{2} \) |
| 19 | \( 1 + 5.29iT - 19T^{2} \) |
| 23 | \( 1 + 6T + 23T^{2} \) |
| 31 | \( 1 + 5.29iT - 31T^{2} \) |
| 37 | \( 1 - 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 - 10.5iT - 43T^{2} \) |
| 47 | \( 1 + 10.5iT - 47T^{2} \) |
| 53 | \( 1 - 2T + 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 10.5iT - 61T^{2} \) |
| 67 | \( 1 + 10T + 67T^{2} \) |
| 71 | \( 1 + 8T + 71T^{2} \) |
| 73 | \( 1 - 10.5iT - 73T^{2} \) |
| 79 | \( 1 + 5.29iT - 79T^{2} \) |
| 83 | \( 1 + 2T + 83T^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 + 10.5iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.470582301378564517997574557205, −7.976562544665603274110148197718, −7.15512741440067962975235820955, −6.20752930886461033362313003889, −5.65102091194312059907869035499, −4.54963178960577385454365137426, −3.96779126658561315776452495989, −2.89324064508001135448263985147, −1.75233454512257633143037836041, −0.64375026641997947079017916041,
1.51907464393495957692269158149, 1.92863160573567488285900611370, 3.48747735092341229806242415675, 4.31884821915215684365169176836, 4.88896816840571907954329386207, 5.87192877836553894179469530398, 6.79512126214371596950172790857, 7.48649479897347423833606477601, 8.027080642777572456683984381219, 8.935178472768283497828851008052