Properties

Label 2-2900-5.4-c1-0-30
Degree $2$
Conductor $2900$
Sign $-0.447 + 0.894i$
Analytic cond. $23.1566$
Root an. cond. $4.81213$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2i·7-s + 3·9-s − 4·11-s + 6i·13-s − 4i·17-s − 4·19-s − 6i·23-s + 29-s − 8i·37-s − 2·41-s − 4i·43-s − 4i·47-s + 3·49-s + 2i·53-s − 8·59-s + ⋯
L(s)  = 1  − 0.755i·7-s + 9-s − 1.20·11-s + 1.66i·13-s − 0.970i·17-s − 0.917·19-s − 1.25i·23-s + 0.185·29-s − 1.31i·37-s − 0.312·41-s − 0.609i·43-s − 0.583i·47-s + 0.428·49-s + 0.274i·53-s − 1.04·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2900\)    =    \(2^{2} \cdot 5^{2} \cdot 29\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(23.1566\)
Root analytic conductor: \(4.81213\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2900} (349, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2900,\ (\ :1/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.063723247\)
\(L(\frac12)\) \(\approx\) \(1.063723247\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
29 \( 1 - T \)
good3 \( 1 - 3T^{2} \)
7 \( 1 + 2iT - 7T^{2} \)
11 \( 1 + 4T + 11T^{2} \)
13 \( 1 - 6iT - 13T^{2} \)
17 \( 1 + 4iT - 17T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 + 6iT - 23T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 + 8iT - 37T^{2} \)
41 \( 1 + 2T + 41T^{2} \)
43 \( 1 + 4iT - 43T^{2} \)
47 \( 1 + 4iT - 47T^{2} \)
53 \( 1 - 2iT - 53T^{2} \)
59 \( 1 + 8T + 59T^{2} \)
61 \( 1 - 10T + 61T^{2} \)
67 \( 1 + 10iT - 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 + 8T + 79T^{2} \)
83 \( 1 - 6iT - 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 + 12iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.559707622949417664301421051614, −7.60068513640877513632254178871, −7.02495085014998233467828999705, −6.50394676750622861292798463034, −5.29306695609008653782235124888, −4.42360334142059178851750104458, −4.04440934251699647882786590302, −2.64829727470216481005156600208, −1.78416816676095358309114768162, −0.33450060998632641076951143471, 1.34177582048891787878689287228, 2.48474427366869866890868891493, 3.29818970772638684588407964536, 4.36145640142594110115537733342, 5.29370203417765677142249418246, 5.80142436213539002183481841905, 6.72385142506222739225726006087, 7.77606296848255434911357900607, 8.074502068491007693584185571890, 8.908126706885728782043860506154

Graph of the $Z$-function along the critical line