L(s) = 1 | + (−0.623 + 0.781i)2-s + (−0.489 + 2.14i)3-s + (−0.222 − 0.974i)4-s + (0.704 − 2.12i)5-s + (−1.37 − 1.71i)6-s + (4.41 + 1.00i)7-s + (0.900 + 0.433i)8-s + (−1.65 − 0.796i)9-s + (1.22 + 1.87i)10-s + (1.70 + 3.53i)11-s + 2.19·12-s + (−1.21 − 2.52i)13-s + (−3.54 + 2.82i)14-s + (4.20 + 2.54i)15-s + (−0.900 + 0.433i)16-s − 1.61·17-s + ⋯ |
L(s) = 1 | + (−0.440 + 0.552i)2-s + (−0.282 + 1.23i)3-s + (−0.111 − 0.487i)4-s + (0.314 − 0.949i)5-s + (−0.559 − 0.701i)6-s + (1.66 + 0.380i)7-s + (0.318 + 0.153i)8-s + (−0.551 − 0.265i)9-s + (0.385 + 0.592i)10-s + (0.513 + 1.06i)11-s + 0.634·12-s + (−0.336 − 0.699i)13-s + (−0.946 + 0.754i)14-s + (1.08 + 0.657i)15-s + (−0.225 + 0.108i)16-s − 0.391·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0124 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0124 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.823118 + 0.812951i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.823118 + 0.812951i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.623 - 0.781i)T \) |
| 5 | \( 1 + (-0.704 + 2.12i)T \) |
| 29 | \( 1 + (-1.19 - 5.25i)T \) |
good | 3 | \( 1 + (0.489 - 2.14i)T + (-2.70 - 1.30i)T^{2} \) |
| 7 | \( 1 + (-4.41 - 1.00i)T + (6.30 + 3.03i)T^{2} \) |
| 11 | \( 1 + (-1.70 - 3.53i)T + (-6.85 + 8.60i)T^{2} \) |
| 13 | \( 1 + (1.21 + 2.52i)T + (-8.10 + 10.1i)T^{2} \) |
| 17 | \( 1 + 1.61T + 17T^{2} \) |
| 19 | \( 1 + (-2.96 + 0.677i)T + (17.1 - 8.24i)T^{2} \) |
| 23 | \( 1 + (2.46 - 1.96i)T + (5.11 - 22.4i)T^{2} \) |
| 31 | \( 1 + (5.89 + 4.69i)T + (6.89 + 30.2i)T^{2} \) |
| 37 | \( 1 + (-7.83 - 3.77i)T + (23.0 + 28.9i)T^{2} \) |
| 41 | \( 1 + 1.60iT - 41T^{2} \) |
| 43 | \( 1 + (-0.637 - 0.799i)T + (-9.56 + 41.9i)T^{2} \) |
| 47 | \( 1 + (-1.18 + 0.572i)T + (29.3 - 36.7i)T^{2} \) |
| 53 | \( 1 + (6.05 + 4.83i)T + (11.7 + 51.6i)T^{2} \) |
| 59 | \( 1 + 3.30T + 59T^{2} \) |
| 61 | \( 1 + (-11.9 - 2.72i)T + (54.9 + 26.4i)T^{2} \) |
| 67 | \( 1 + (-6.20 + 12.8i)T + (-41.7 - 52.3i)T^{2} \) |
| 71 | \( 1 + (0.960 - 0.462i)T + (44.2 - 55.5i)T^{2} \) |
| 73 | \( 1 + (9.42 + 11.8i)T + (-16.2 + 71.1i)T^{2} \) |
| 79 | \( 1 + (3.68 - 7.65i)T + (-49.2 - 61.7i)T^{2} \) |
| 83 | \( 1 + (3.39 - 0.773i)T + (74.7 - 36.0i)T^{2} \) |
| 89 | \( 1 + (11.0 + 8.83i)T + (19.8 + 86.7i)T^{2} \) |
| 97 | \( 1 + (3.66 + 16.0i)T + (-87.3 + 42.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.76433898959136319119711291804, −10.97278972726967975273693083386, −9.861489817110037818951949177138, −9.320897652018033280164422411089, −8.336275935088352003767518696230, −7.43621498109887914540956535977, −5.64743097477939286704136017740, −4.96943020629602822815722973122, −4.32019187699002600533689817548, −1.71473390510610925362803289610,
1.28369741211561202730479542326, 2.35979067804432340996149948056, 4.11311667196119753338318876329, 5.79078592393963267657779454410, 6.91376478019784828149972154328, 7.64881720295075440882626460816, 8.514658073211420604195524117918, 9.814118438919320806756890145963, 11.17072465100434080996560388579, 11.27519802704701739208006478897