L(s) = 1 | − 3.61i·2-s + 5.13i·3-s + 18.9·4-s + 15.9·5-s + 18.5·6-s + 69.7·7-s − 184. i·8-s + 216.·9-s − 57.5i·10-s − 400. i·11-s + 97.0i·12-s − 178.·13-s − 252. i·14-s + 81.5i·15-s − 60.6·16-s + 1.41e3i·17-s + ⋯ |
L(s) = 1 | − 0.639i·2-s + 0.329i·3-s + 0.591·4-s + 0.284·5-s + 0.210·6-s + 0.538·7-s − 1.01i·8-s + 0.891·9-s − 0.181i·10-s − 0.997i·11-s + 0.194i·12-s − 0.293·13-s − 0.344i·14-s + 0.0936i·15-s − 0.0592·16-s + 1.18i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.760 + 0.649i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.760 + 0.649i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.80095 - 0.664918i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.80095 - 0.664918i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 29 | \( 1 + (3.44e3 + 2.94e3i)T \) |
good | 2 | \( 1 + 3.61iT - 32T^{2} \) |
| 3 | \( 1 - 5.13iT - 243T^{2} \) |
| 5 | \( 1 - 15.9T + 3.12e3T^{2} \) |
| 7 | \( 1 - 69.7T + 1.68e4T^{2} \) |
| 11 | \( 1 + 400. iT - 1.61e5T^{2} \) |
| 13 | \( 1 + 178.T + 3.71e5T^{2} \) |
| 17 | \( 1 - 1.41e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 1.72e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 + 1.10e3T + 6.43e6T^{2} \) |
| 31 | \( 1 + 2.03e3iT - 2.86e7T^{2} \) |
| 37 | \( 1 - 7.21e3iT - 6.93e7T^{2} \) |
| 41 | \( 1 + 7.33e3iT - 1.15e8T^{2} \) |
| 43 | \( 1 - 4.97e3iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 493. iT - 2.29e8T^{2} \) |
| 53 | \( 1 + 1.08e4T + 4.18e8T^{2} \) |
| 59 | \( 1 + 4.33e3T + 7.14e8T^{2} \) |
| 61 | \( 1 - 4.64e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 + 4.48e3T + 1.35e9T^{2} \) |
| 71 | \( 1 - 5.86e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 1.53e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 + 3.38e4iT - 3.07e9T^{2} \) |
| 83 | \( 1 - 4.57e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + 1.04e5iT - 5.58e9T^{2} \) |
| 97 | \( 1 - 1.51e5iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.94140892648176556511101029987, −14.81615116804611109660908560966, −13.26421225367381465089690925197, −11.98874249901935746188900341250, −10.77700332583602632917282615318, −9.821045478389001959676100129279, −7.88420292805957214464905222434, −6.05927085244923403208520314160, −3.83423422322461450363135384178, −1.70327997223238695050924854688,
2.01808469993381526239639544879, 4.99051303170429702386281609336, 6.82145562236737283616336173684, 7.68433371549105659157784675757, 9.619919298339645670098322552560, 11.21799153574783177117933966867, 12.48762414887791882846624483321, 13.96334452479108232296946524339, 15.16885189185598158922973625917, 16.05752682243793045041666864101