Properties

Label 2-29-29.24-c3-0-4
Degree $2$
Conductor $29$
Sign $-0.449 + 0.893i$
Analytic cond. $1.71105$
Root an. cond. $1.30807$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.46 − 1.84i)2-s + (−0.0880 − 0.385i)3-s + (0.545 − 2.39i)4-s + (−7.25 − 9.10i)5-s + (−0.580 + 0.728i)6-s + (−1.72 − 7.57i)7-s + (−22.1 + 10.6i)8-s + (24.1 − 11.6i)9-s + (−6.10 + 26.7i)10-s + (20.0 + 9.65i)11-s − 0.970·12-s + (65.0 + 31.3i)13-s + (−11.4 + 14.3i)14-s + (−2.87 + 3.60i)15-s + (34.5 + 16.6i)16-s − 43.4·17-s + ⋯
L(s)  = 1  + (−0.519 − 0.651i)2-s + (−0.0169 − 0.0742i)3-s + (0.0682 − 0.298i)4-s + (−0.649 − 0.814i)5-s + (−0.0395 + 0.0495i)6-s + (−0.0933 − 0.408i)7-s + (−0.980 + 0.472i)8-s + (0.895 − 0.431i)9-s + (−0.192 + 0.845i)10-s + (0.549 + 0.264i)11-s − 0.0233·12-s + (1.38 + 0.668i)13-s + (−0.217 + 0.272i)14-s + (−0.0494 + 0.0619i)15-s + (0.540 + 0.260i)16-s − 0.620·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.449 + 0.893i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.449 + 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(29\)
Sign: $-0.449 + 0.893i$
Analytic conductor: \(1.71105\)
Root analytic conductor: \(1.30807\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{29} (24, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 29,\ (\ :3/2),\ -0.449 + 0.893i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.455047 - 0.737961i\)
\(L(\frac12)\) \(\approx\) \(0.455047 - 0.737961i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 + (18.7 + 155. i)T \)
good2 \( 1 + (1.46 + 1.84i)T + (-1.78 + 7.79i)T^{2} \)
3 \( 1 + (0.0880 + 0.385i)T + (-24.3 + 11.7i)T^{2} \)
5 \( 1 + (7.25 + 9.10i)T + (-27.8 + 121. i)T^{2} \)
7 \( 1 + (1.72 + 7.57i)T + (-309. + 148. i)T^{2} \)
11 \( 1 + (-20.0 - 9.65i)T + (829. + 1.04e3i)T^{2} \)
13 \( 1 + (-65.0 - 31.3i)T + (1.36e3 + 1.71e3i)T^{2} \)
17 \( 1 + 43.4T + 4.91e3T^{2} \)
19 \( 1 + (-9.59 + 42.0i)T + (-6.17e3 - 2.97e3i)T^{2} \)
23 \( 1 + (12.2 - 15.3i)T + (-2.70e3 - 1.18e4i)T^{2} \)
31 \( 1 + (-126. - 158. i)T + (-6.62e3 + 2.90e4i)T^{2} \)
37 \( 1 + (-153. + 73.7i)T + (3.15e4 - 3.96e4i)T^{2} \)
41 \( 1 + 227.T + 6.89e4T^{2} \)
43 \( 1 + (311. - 391. i)T + (-1.76e4 - 7.75e4i)T^{2} \)
47 \( 1 + (-388. - 187. i)T + (6.47e4 + 8.11e4i)T^{2} \)
53 \( 1 + (128. + 161. i)T + (-3.31e4 + 1.45e5i)T^{2} \)
59 \( 1 + 163.T + 2.05e5T^{2} \)
61 \( 1 + (-5.56 - 24.4i)T + (-2.04e5 + 9.84e4i)T^{2} \)
67 \( 1 + (726. - 350. i)T + (1.87e5 - 2.35e5i)T^{2} \)
71 \( 1 + (-917. - 442. i)T + (2.23e5 + 2.79e5i)T^{2} \)
73 \( 1 + (361. - 452. i)T + (-8.65e4 - 3.79e5i)T^{2} \)
79 \( 1 + (-91.2 + 43.9i)T + (3.07e5 - 3.85e5i)T^{2} \)
83 \( 1 + (239. - 1.04e3i)T + (-5.15e5 - 2.48e5i)T^{2} \)
89 \( 1 + (-928. - 1.16e3i)T + (-1.56e5 + 6.87e5i)T^{2} \)
97 \( 1 + (-159. + 699. i)T + (-8.22e5 - 3.95e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.19077423767543189925522392922, −15.26668030668585810796653071417, −13.56672193231415608961893890487, −12.17035831802957753052766935559, −11.15527486697881906723455215948, −9.694940793618321799453086078041, −8.578821269398829469552882822942, −6.57237236415691067288561321909, −4.22036798168713370107747858254, −1.14424725613581804888388204731, 3.57983825342779251151980034020, 6.34760285294750310277789562108, 7.59639515224047130742223273565, 8.819313167363719462674985925172, 10.58671590118918502270512826215, 11.91118129406529661401077919323, 13.36106098523603079039005574431, 15.18399685781908963541346628297, 15.73688382830775430015064980316, 16.86607029007442859248972935677

Graph of the $Z$-function along the critical line