Properties

Label 2-29-29.20-c3-0-5
Degree $2$
Conductor $29$
Sign $-0.998 + 0.0563i$
Analytic cond. $1.71105$
Root an. cond. $1.30807$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.46 + 0.706i)2-s + (−3.52 − 4.41i)3-s + (−3.33 + 4.17i)4-s + (−12.5 + 6.03i)5-s + (8.29 + 3.99i)6-s + (−8.89 − 11.1i)7-s + (4.83 − 21.1i)8-s + (−1.10 + 4.83i)9-s + (14.1 − 17.7i)10-s + (12.1 + 53.3i)11-s + 30.2·12-s + (−3.30 − 14.4i)13-s + (20.9 + 10.0i)14-s + (70.8 + 34.1i)15-s + (−1.63 − 7.15i)16-s − 118.·17-s + ⋯
L(s)  = 1  + (−0.518 + 0.249i)2-s + (−0.678 − 0.850i)3-s + (−0.416 + 0.522i)4-s + (−1.12 + 0.539i)5-s + (0.564 + 0.271i)6-s + (−0.480 − 0.602i)7-s + (0.213 − 0.936i)8-s + (−0.0408 + 0.179i)9-s + (0.446 − 0.560i)10-s + (0.333 + 1.46i)11-s + 0.727·12-s + (−0.0705 − 0.309i)13-s + (0.399 + 0.192i)14-s + (1.21 + 0.587i)15-s + (−0.0255 − 0.111i)16-s − 1.68·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 + 0.0563i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.998 + 0.0563i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(29\)
Sign: $-0.998 + 0.0563i$
Analytic conductor: \(1.71105\)
Root analytic conductor: \(1.30807\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{29} (20, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 29,\ (\ :3/2),\ -0.998 + 0.0563i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.000255661 - 0.00907462i\)
\(L(\frac12)\) \(\approx\) \(0.000255661 - 0.00907462i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 + (128. - 88.2i)T \)
good2 \( 1 + (1.46 - 0.706i)T + (4.98 - 6.25i)T^{2} \)
3 \( 1 + (3.52 + 4.41i)T + (-6.00 + 26.3i)T^{2} \)
5 \( 1 + (12.5 - 6.03i)T + (77.9 - 97.7i)T^{2} \)
7 \( 1 + (8.89 + 11.1i)T + (-76.3 + 334. i)T^{2} \)
11 \( 1 + (-12.1 - 53.3i)T + (-1.19e3 + 577. i)T^{2} \)
13 \( 1 + (3.30 + 14.4i)T + (-1.97e3 + 953. i)T^{2} \)
17 \( 1 + 118.T + 4.91e3T^{2} \)
19 \( 1 + (-38.2 + 47.9i)T + (-1.52e3 - 6.68e3i)T^{2} \)
23 \( 1 + (-5.09 - 2.45i)T + (7.58e3 + 9.51e3i)T^{2} \)
31 \( 1 + (142. - 68.6i)T + (1.85e4 - 2.32e4i)T^{2} \)
37 \( 1 + (-92.5 + 405. i)T + (-4.56e4 - 2.19e4i)T^{2} \)
41 \( 1 + 4.49T + 6.89e4T^{2} \)
43 \( 1 + (-180. - 87.0i)T + (4.95e4 + 6.21e4i)T^{2} \)
47 \( 1 + (-33.7 - 147. i)T + (-9.35e4 + 4.50e4i)T^{2} \)
53 \( 1 + (-80.8 + 38.9i)T + (9.28e4 - 1.16e5i)T^{2} \)
59 \( 1 - 73.5T + 2.05e5T^{2} \)
61 \( 1 + (31.8 + 39.8i)T + (-5.05e4 + 2.21e5i)T^{2} \)
67 \( 1 + (188. - 826. i)T + (-2.70e5 - 1.30e5i)T^{2} \)
71 \( 1 + (193. + 845. i)T + (-3.22e5 + 1.55e5i)T^{2} \)
73 \( 1 + (542. + 261. i)T + (2.42e5 + 3.04e5i)T^{2} \)
79 \( 1 + (140. - 617. i)T + (-4.44e5 - 2.13e5i)T^{2} \)
83 \( 1 + (-531. + 666. i)T + (-1.27e5 - 5.57e5i)T^{2} \)
89 \( 1 + (1.08e3 - 521. i)T + (4.39e5 - 5.51e5i)T^{2} \)
97 \( 1 + (1.06e3 - 1.34e3i)T + (-2.03e5 - 8.89e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.25473055357298022611392322110, −15.08331839781004060936514050235, −13.15009839677231046872293751545, −12.35493988370822382807346493739, −11.06094431444034572175072136213, −9.283831502005562976337720708461, −7.32600950463501438645182316411, −7.03533203884847079476475349285, −4.05457026469857894388972143279, −0.01098724088555078686827738707, 4.27207754359396373457912904765, 5.77475078465079860041297911768, 8.405430781761440642134804652663, 9.430832151612638757130246694908, 10.96438601265951622909085759351, 11.66403694145427441601322714872, 13.50459655359470917759713944286, 15.23142320969710080308018710146, 16.12093640569523941350728738589, 16.98739416673421752686889717031

Graph of the $Z$-function along the critical line