L(s) = 1 | + (−0.277 + 1.21i)2-s + (−1.62 + 0.781i)3-s + (0.400 + 0.193i)4-s + (0.900 − 3.94i)5-s + (−0.5 − 2.19i)6-s + (−0.623 + 0.300i)7-s + (−1.90 + 2.38i)8-s + (0.153 − 0.193i)9-s + (4.54 + 2.19i)10-s + (−1.77 − 2.22i)11-s − 0.801·12-s + (0.914 + 1.14i)13-s + (−0.192 − 0.841i)14-s + (1.62 + 7.11i)15-s + (−1.81 − 2.27i)16-s − 1.60·17-s + ⋯ |
L(s) = 1 | + (−0.196 + 0.859i)2-s + (−0.937 + 0.451i)3-s + (0.200 + 0.0965i)4-s + (0.402 − 1.76i)5-s + (−0.204 − 0.894i)6-s + (−0.235 + 0.113i)7-s + (−0.672 + 0.842i)8-s + (0.0513 − 0.0643i)9-s + (1.43 + 0.692i)10-s + (−0.535 − 0.672i)11-s − 0.231·12-s + (0.253 + 0.318i)13-s + (−0.0513 − 0.224i)14-s + (0.419 + 1.83i)15-s + (−0.453 − 0.569i)16-s − 0.388·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.549 - 0.835i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.549 - 0.835i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.492380 + 0.265566i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.492380 + 0.265566i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 29 | \( 1 + (-3.71 - 3.89i)T \) |
good | 2 | \( 1 + (0.277 - 1.21i)T + (-1.80 - 0.867i)T^{2} \) |
| 3 | \( 1 + (1.62 - 0.781i)T + (1.87 - 2.34i)T^{2} \) |
| 5 | \( 1 + (-0.900 + 3.94i)T + (-4.50 - 2.16i)T^{2} \) |
| 7 | \( 1 + (0.623 - 0.300i)T + (4.36 - 5.47i)T^{2} \) |
| 11 | \( 1 + (1.77 + 2.22i)T + (-2.44 + 10.7i)T^{2} \) |
| 13 | \( 1 + (-0.914 - 1.14i)T + (-2.89 + 12.6i)T^{2} \) |
| 17 | \( 1 + 1.60T + 17T^{2} \) |
| 19 | \( 1 + (-2.42 - 1.16i)T + (11.8 + 14.8i)T^{2} \) |
| 23 | \( 1 + (-1.14 - 5.02i)T + (-20.7 + 9.97i)T^{2} \) |
| 31 | \( 1 + (-0.434 + 1.90i)T + (-27.9 - 13.4i)T^{2} \) |
| 37 | \( 1 + (-1.77 + 2.22i)T + (-8.23 - 36.0i)T^{2} \) |
| 41 | \( 1 - 6.49T + 41T^{2} \) |
| 43 | \( 1 + (0.147 + 0.648i)T + (-38.7 + 18.6i)T^{2} \) |
| 47 | \( 1 + (2.96 + 3.71i)T + (-10.4 + 45.8i)T^{2} \) |
| 53 | \( 1 + (0.0108 - 0.0476i)T + (-47.7 - 22.9i)T^{2} \) |
| 59 | \( 1 + 6.39T + 59T^{2} \) |
| 61 | \( 1 + (-1.17 + 0.567i)T + (38.0 - 47.6i)T^{2} \) |
| 67 | \( 1 + (-9.32 + 11.6i)T + (-14.9 - 65.3i)T^{2} \) |
| 71 | \( 1 + (1.40 + 1.76i)T + (-15.7 + 69.2i)T^{2} \) |
| 73 | \( 1 + (1.85 + 8.11i)T + (-65.7 + 31.6i)T^{2} \) |
| 79 | \( 1 + (6.07 - 7.61i)T + (-17.5 - 77.0i)T^{2} \) |
| 83 | \( 1 + (-3.62 - 1.74i)T + (51.7 + 64.8i)T^{2} \) |
| 89 | \( 1 + (2.50 - 10.9i)T + (-80.1 - 38.6i)T^{2} \) |
| 97 | \( 1 + (-4.11 - 1.98i)T + (60.4 + 75.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.98402567822991773204655584388, −16.25203566549428088037148208792, −15.78026043735343791501662921464, −13.70742248978829432316592761436, −12.34594035035493455150221024240, −11.18169602022353313051744050997, −9.316771376289671385980121419354, −8.115387743568871256004602444772, −5.99289058272781368313125466695, −5.08866170452463378308470265617,
2.78194491136502306249726834988, 6.16587374479562321953016828178, 7.02558343554993958193798692433, 9.930267503431574766805015088400, 10.78410442425223783389636846114, 11.62269724518465848846122598511, 12.93725898884036577190654568954, 14.59145313481971096415539183856, 15.74392666089394564457930219587, 17.62954068797365083169444487302