Properties

Label 2-29-1.1-c9-0-9
Degree $2$
Conductor $29$
Sign $1$
Analytic cond. $14.9360$
Root an. cond. $3.86471$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 39.0·2-s − 174.·3-s + 1.01e3·4-s − 303.·5-s − 6.80e3·6-s + 1.25e4·7-s + 1.95e4·8-s + 1.07e4·9-s − 1.18e4·10-s + 2.80e4·11-s − 1.76e5·12-s + 8.30e4·13-s + 4.90e5·14-s + 5.29e4·15-s + 2.45e5·16-s + 5.97e5·17-s + 4.18e5·18-s − 1.24e5·19-s − 3.07e5·20-s − 2.18e6·21-s + 1.09e6·22-s − 1.57e6·23-s − 3.41e6·24-s − 1.86e6·25-s + 3.24e6·26-s + 1.56e6·27-s + 1.27e7·28-s + ⋯
L(s)  = 1  + 1.72·2-s − 1.24·3-s + 1.97·4-s − 0.217·5-s − 2.14·6-s + 1.97·7-s + 1.68·8-s + 0.543·9-s − 0.375·10-s + 0.577·11-s − 2.45·12-s + 0.806·13-s + 3.41·14-s + 0.270·15-s + 0.936·16-s + 1.73·17-s + 0.938·18-s − 0.218·19-s − 0.430·20-s − 2.45·21-s + 0.997·22-s − 1.17·23-s − 2.09·24-s − 0.952·25-s + 1.39·26-s + 0.566·27-s + 3.91·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(29\)
Sign: $1$
Analytic conductor: \(14.9360\)
Root analytic conductor: \(3.86471\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 29,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(3.993880380\)
\(L(\frac12)\) \(\approx\) \(3.993880380\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 - 7.07e5T \)
good2 \( 1 - 39.0T + 512T^{2} \)
3 \( 1 + 174.T + 1.96e4T^{2} \)
5 \( 1 + 303.T + 1.95e6T^{2} \)
7 \( 1 - 1.25e4T + 4.03e7T^{2} \)
11 \( 1 - 2.80e4T + 2.35e9T^{2} \)
13 \( 1 - 8.30e4T + 1.06e10T^{2} \)
17 \( 1 - 5.97e5T + 1.18e11T^{2} \)
19 \( 1 + 1.24e5T + 3.22e11T^{2} \)
23 \( 1 + 1.57e6T + 1.80e12T^{2} \)
31 \( 1 + 4.96e6T + 2.64e13T^{2} \)
37 \( 1 - 2.43e6T + 1.29e14T^{2} \)
41 \( 1 + 1.97e6T + 3.27e14T^{2} \)
43 \( 1 - 1.23e7T + 5.02e14T^{2} \)
47 \( 1 + 1.78e7T + 1.11e15T^{2} \)
53 \( 1 + 5.50e7T + 3.29e15T^{2} \)
59 \( 1 + 4.75e7T + 8.66e15T^{2} \)
61 \( 1 + 1.26e8T + 1.16e16T^{2} \)
67 \( 1 - 2.95e8T + 2.72e16T^{2} \)
71 \( 1 + 1.79e8T + 4.58e16T^{2} \)
73 \( 1 - 1.11e8T + 5.88e16T^{2} \)
79 \( 1 + 4.73e8T + 1.19e17T^{2} \)
83 \( 1 - 8.41e8T + 1.86e17T^{2} \)
89 \( 1 + 9.29e7T + 3.50e17T^{2} \)
97 \( 1 - 3.59e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.67198516911082760059301836117, −14.00433014870671600291953267722, −12.24149495374628533207996319426, −11.63826148615711051340406794397, −10.84272067829767106790706394316, −7.83319491723503748326156433596, −6.04392478483799008576153510785, −5.18384266044858084189341895291, −3.98536306303619386823235668624, −1.51281490390107966481586227337, 1.51281490390107966481586227337, 3.98536306303619386823235668624, 5.18384266044858084189341895291, 6.04392478483799008576153510785, 7.83319491723503748326156433596, 10.84272067829767106790706394316, 11.63826148615711051340406794397, 12.24149495374628533207996319426, 14.00433014870671600291953267722, 14.67198516911082760059301836117

Graph of the $Z$-function along the critical line