L(s) = 1 | − 2-s − i·3-s + 4-s + i·5-s + i·6-s − i·7-s − 8-s + 2·9-s − i·10-s − i·12-s − 4·13-s + i·14-s + 15-s + 16-s − 2·18-s + 4·19-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577i·3-s + 0.5·4-s + 0.447i·5-s + 0.408i·6-s − 0.377i·7-s − 0.353·8-s + 0.666·9-s − 0.316i·10-s − 0.288i·12-s − 1.10·13-s + 0.267i·14-s + 0.258·15-s + 0.250·16-s − 0.471·18-s + 0.917·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2890 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.242 + 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2890 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.242 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.186624382\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.186624382\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 5 | \( 1 - iT \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + iT - 3T^{2} \) |
| 7 | \( 1 + iT - 7T^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 + 4T + 13T^{2} \) |
| 19 | \( 1 - 4T + 19T^{2} \) |
| 23 | \( 1 - 3iT - 23T^{2} \) |
| 29 | \( 1 + 6iT - 29T^{2} \) |
| 31 | \( 1 + 2iT - 31T^{2} \) |
| 37 | \( 1 - 4iT - 37T^{2} \) |
| 41 | \( 1 + 3iT - 41T^{2} \) |
| 43 | \( 1 - 4T + 43T^{2} \) |
| 47 | \( 1 + 12T + 47T^{2} \) |
| 53 | \( 1 - 12T + 53T^{2} \) |
| 59 | \( 1 - 6T + 59T^{2} \) |
| 61 | \( 1 + 10iT - 61T^{2} \) |
| 67 | \( 1 + T + 67T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + 2iT - 73T^{2} \) |
| 79 | \( 1 + 10iT - 79T^{2} \) |
| 83 | \( 1 + 15T + 83T^{2} \) |
| 89 | \( 1 + 3T + 89T^{2} \) |
| 97 | \( 1 + 8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.483414034683864378188392433378, −7.56277865196401462108288061444, −7.38084310022428812238533166824, −6.63362447042921678271053809634, −5.75984933580288816085016021861, −4.72138404553947619026225792246, −3.69045354860122262526671911965, −2.61725706645985684844468860646, −1.74662292402365013999281585183, −0.56778804928950598091847590753,
1.02832473081322840057854112033, 2.19841278530057643720443064680, 3.21391623184740625602208576996, 4.29881814731718880686675369577, 5.06824685127709190899003337497, 5.75632384588285687564403170512, 7.04020430473920827106931757285, 7.31000265140466359713524703877, 8.425544194421182110423768369970, 8.938097994529038014501110173720