Properties

Label 2-2883-1.1-c1-0-89
Degree $2$
Conductor $2883$
Sign $1$
Analytic cond. $23.0208$
Root an. cond. $4.79800$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.16·2-s − 3-s + 2.69·4-s + 2.49·5-s − 2.16·6-s + 1.25·7-s + 1.49·8-s + 9-s + 5.39·10-s + 0.689·11-s − 2.69·12-s + 4.68·13-s + 2.70·14-s − 2.49·15-s − 2.13·16-s − 0.185·17-s + 2.16·18-s + 7.71·19-s + 6.70·20-s − 1.25·21-s + 1.49·22-s − 8.34·23-s − 1.49·24-s + 1.20·25-s + 10.1·26-s − 27-s + 3.36·28-s + ⋯
L(s)  = 1  + 1.53·2-s − 0.577·3-s + 1.34·4-s + 1.11·5-s − 0.884·6-s + 0.472·7-s + 0.529·8-s + 0.333·9-s + 1.70·10-s + 0.207·11-s − 0.776·12-s + 1.29·13-s + 0.724·14-s − 0.643·15-s − 0.534·16-s − 0.0449·17-s + 0.510·18-s + 1.76·19-s + 1.49·20-s − 0.273·21-s + 0.318·22-s − 1.74·23-s − 0.305·24-s + 0.240·25-s + 1.99·26-s − 0.192·27-s + 0.636·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2883 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2883 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2883\)    =    \(3 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(23.0208\)
Root analytic conductor: \(4.79800\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2883,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.009035844\)
\(L(\frac12)\) \(\approx\) \(5.009035844\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
31 \( 1 \)
good2 \( 1 - 2.16T + 2T^{2} \)
5 \( 1 - 2.49T + 5T^{2} \)
7 \( 1 - 1.25T + 7T^{2} \)
11 \( 1 - 0.689T + 11T^{2} \)
13 \( 1 - 4.68T + 13T^{2} \)
17 \( 1 + 0.185T + 17T^{2} \)
19 \( 1 - 7.71T + 19T^{2} \)
23 \( 1 + 8.34T + 23T^{2} \)
29 \( 1 - 4.42T + 29T^{2} \)
37 \( 1 + 1.94T + 37T^{2} \)
41 \( 1 - 8.55T + 41T^{2} \)
43 \( 1 + 10.7T + 43T^{2} \)
47 \( 1 - 4.65T + 47T^{2} \)
53 \( 1 - 8.40T + 53T^{2} \)
59 \( 1 - 5.78T + 59T^{2} \)
61 \( 1 - 3.09T + 61T^{2} \)
67 \( 1 + 10.0T + 67T^{2} \)
71 \( 1 + 9.39T + 71T^{2} \)
73 \( 1 - 11.2T + 73T^{2} \)
79 \( 1 - 0.210T + 79T^{2} \)
83 \( 1 - 7.23T + 83T^{2} \)
89 \( 1 - 2.40T + 89T^{2} \)
97 \( 1 + 3.68T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.803508272288703926670092239905, −7.81453464812959107875052923315, −6.79118134470060568369285540920, −6.09105727792506961803912609329, −5.68343676877863871250712423260, −5.04456159758939254770957178394, −4.13660922201056815470269062957, −3.37534038857995484568520128780, −2.23141037042745796452355891792, −1.27889022298535464463104557442, 1.27889022298535464463104557442, 2.23141037042745796452355891792, 3.37534038857995484568520128780, 4.13660922201056815470269062957, 5.04456159758939254770957178394, 5.68343676877863871250712423260, 6.09105727792506961803912609329, 6.79118134470060568369285540920, 7.81453464812959107875052923315, 8.803508272288703926670092239905

Graph of the $Z$-function along the critical line