L(s) = 1 | + 1.86·2-s + 3-s + 1.48·4-s + 1.48·5-s + 1.86·6-s − 4.98·7-s − 0.955·8-s + 9-s + 2.76·10-s + 1.75·11-s + 1.48·12-s − 5.37·13-s − 9.30·14-s + 1.48·15-s − 4.76·16-s − 3.34·17-s + 1.86·18-s + 2.16·19-s + 2.20·20-s − 4.98·21-s + 3.28·22-s − 7.28·23-s − 0.955·24-s − 2.80·25-s − 10.0·26-s + 27-s − 7.41·28-s + ⋯ |
L(s) = 1 | + 1.32·2-s + 0.577·3-s + 0.744·4-s + 0.662·5-s + 0.762·6-s − 1.88·7-s − 0.337·8-s + 0.333·9-s + 0.874·10-s + 0.530·11-s + 0.429·12-s − 1.48·13-s − 2.48·14-s + 0.382·15-s − 1.19·16-s − 0.812·17-s + 0.440·18-s + 0.497·19-s + 0.492·20-s − 1.08·21-s + 0.700·22-s − 1.51·23-s − 0.195·24-s − 0.561·25-s − 1.96·26-s + 0.192·27-s − 1.40·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2883 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2883 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 31 | \( 1 \) |
good | 2 | \( 1 - 1.86T + 2T^{2} \) |
| 5 | \( 1 - 1.48T + 5T^{2} \) |
| 7 | \( 1 + 4.98T + 7T^{2} \) |
| 11 | \( 1 - 1.75T + 11T^{2} \) |
| 13 | \( 1 + 5.37T + 13T^{2} \) |
| 17 | \( 1 + 3.34T + 17T^{2} \) |
| 19 | \( 1 - 2.16T + 19T^{2} \) |
| 23 | \( 1 + 7.28T + 23T^{2} \) |
| 29 | \( 1 - 0.450T + 29T^{2} \) |
| 37 | \( 1 + 8.02T + 37T^{2} \) |
| 41 | \( 1 - 6.42T + 41T^{2} \) |
| 43 | \( 1 - 1.07T + 43T^{2} \) |
| 47 | \( 1 + 1.10T + 47T^{2} \) |
| 53 | \( 1 - 7.91T + 53T^{2} \) |
| 59 | \( 1 - 6.84T + 59T^{2} \) |
| 61 | \( 1 + 1.76T + 61T^{2} \) |
| 67 | \( 1 - 13.6T + 67T^{2} \) |
| 71 | \( 1 - 1.32T + 71T^{2} \) |
| 73 | \( 1 + 0.185T + 73T^{2} \) |
| 79 | \( 1 + 1.13T + 79T^{2} \) |
| 83 | \( 1 + 14.5T + 83T^{2} \) |
| 89 | \( 1 + 18.2T + 89T^{2} \) |
| 97 | \( 1 + 0.255T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.519883357804555017090971664103, −7.20150793226950265505886153271, −6.74165554310221775627979264057, −5.97893250717355765349995532187, −5.36997935302491263524533067851, −4.21565663638116455046113350969, −3.70294409835383232251721668672, −2.74111087493231719337699476065, −2.20504279673316947170209405947, 0,
2.20504279673316947170209405947, 2.74111087493231719337699476065, 3.70294409835383232251721668672, 4.21565663638116455046113350969, 5.36997935302491263524533067851, 5.97893250717355765349995532187, 6.74165554310221775627979264057, 7.20150793226950265505886153271, 8.519883357804555017090971664103