Properties

Label 2-2883-1.1-c1-0-150
Degree $2$
Conductor $2883$
Sign $-1$
Analytic cond. $23.0208$
Root an. cond. $4.79800$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73·2-s + 3-s + 1.00·4-s − 1.94·5-s + 1.73·6-s + 4.25·7-s − 1.72·8-s + 9-s − 3.37·10-s − 4.96·11-s + 1.00·12-s − 5.19·13-s + 7.38·14-s − 1.94·15-s − 4.99·16-s + 1.81·17-s + 1.73·18-s − 7.12·19-s − 1.95·20-s + 4.25·21-s − 8.61·22-s − 1.40·23-s − 1.72·24-s − 1.20·25-s − 9.00·26-s + 27-s + 4.28·28-s + ⋯
L(s)  = 1  + 1.22·2-s + 0.577·3-s + 0.503·4-s − 0.870·5-s + 0.707·6-s + 1.60·7-s − 0.609·8-s + 0.333·9-s − 1.06·10-s − 1.49·11-s + 0.290·12-s − 1.44·13-s + 1.97·14-s − 0.502·15-s − 1.24·16-s + 0.441·17-s + 0.408·18-s − 1.63·19-s − 0.438·20-s + 0.929·21-s − 1.83·22-s − 0.292·23-s − 0.351·24-s − 0.241·25-s − 1.76·26-s + 0.192·27-s + 0.810·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2883 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2883 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2883\)    =    \(3 \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(23.0208\)
Root analytic conductor: \(4.79800\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2883,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
31 \( 1 \)
good2 \( 1 - 1.73T + 2T^{2} \)
5 \( 1 + 1.94T + 5T^{2} \)
7 \( 1 - 4.25T + 7T^{2} \)
11 \( 1 + 4.96T + 11T^{2} \)
13 \( 1 + 5.19T + 13T^{2} \)
17 \( 1 - 1.81T + 17T^{2} \)
19 \( 1 + 7.12T + 19T^{2} \)
23 \( 1 + 1.40T + 23T^{2} \)
29 \( 1 + 3.55T + 29T^{2} \)
37 \( 1 + 3.57T + 37T^{2} \)
41 \( 1 - 6.27T + 41T^{2} \)
43 \( 1 + 0.877T + 43T^{2} \)
47 \( 1 - 2.86T + 47T^{2} \)
53 \( 1 - 1.42T + 53T^{2} \)
59 \( 1 - 10.9T + 59T^{2} \)
61 \( 1 + 2.16T + 61T^{2} \)
67 \( 1 + 3.41T + 67T^{2} \)
71 \( 1 - 12.0T + 71T^{2} \)
73 \( 1 + 10.2T + 73T^{2} \)
79 \( 1 - 5.83T + 79T^{2} \)
83 \( 1 + 15.6T + 83T^{2} \)
89 \( 1 - 8.35T + 89T^{2} \)
97 \( 1 + 13.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.141022125788695777209573238363, −7.74457979220548143614011841856, −7.02772869944014481224023299132, −5.67648974565733122494525815512, −5.07386116323263181902926569652, −4.43826464938239667037389268782, −3.87583916618471186973243597327, −2.66051372930993468982013852195, −2.10219555706588060812662217980, 0, 2.10219555706588060812662217980, 2.66051372930993468982013852195, 3.87583916618471186973243597327, 4.43826464938239667037389268782, 5.07386116323263181902926569652, 5.67648974565733122494525815512, 7.02772869944014481224023299132, 7.74457979220548143614011841856, 8.141022125788695777209573238363

Graph of the $Z$-function along the critical line