Properties

Label 2-2883-1.1-c1-0-32
Degree $2$
Conductor $2883$
Sign $1$
Analytic cond. $23.0208$
Root an. cond. $4.79800$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.773·2-s + 3-s − 1.40·4-s − 1.00·5-s + 0.773·6-s − 0.385·7-s − 2.63·8-s + 9-s − 0.776·10-s + 3.88·11-s − 1.40·12-s − 3.10·13-s − 0.298·14-s − 1.00·15-s + 0.766·16-s + 0.0632·17-s + 0.773·18-s − 1.66·19-s + 1.40·20-s − 0.385·21-s + 3.00·22-s + 3.26·23-s − 2.63·24-s − 3.99·25-s − 2.40·26-s + 27-s + 0.540·28-s + ⋯
L(s)  = 1  + 0.547·2-s + 0.577·3-s − 0.700·4-s − 0.449·5-s + 0.315·6-s − 0.145·7-s − 0.930·8-s + 0.333·9-s − 0.245·10-s + 1.17·11-s − 0.404·12-s − 0.860·13-s − 0.0798·14-s − 0.259·15-s + 0.191·16-s + 0.0153·17-s + 0.182·18-s − 0.382·19-s + 0.314·20-s − 0.0842·21-s + 0.640·22-s + 0.680·23-s − 0.537·24-s − 0.798·25-s − 0.470·26-s + 0.192·27-s + 0.102·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2883 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2883 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2883\)    =    \(3 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(23.0208\)
Root analytic conductor: \(4.79800\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2883,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.098741770\)
\(L(\frac12)\) \(\approx\) \(2.098741770\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
31 \( 1 \)
good2 \( 1 - 0.773T + 2T^{2} \)
5 \( 1 + 1.00T + 5T^{2} \)
7 \( 1 + 0.385T + 7T^{2} \)
11 \( 1 - 3.88T + 11T^{2} \)
13 \( 1 + 3.10T + 13T^{2} \)
17 \( 1 - 0.0632T + 17T^{2} \)
19 \( 1 + 1.66T + 19T^{2} \)
23 \( 1 - 3.26T + 23T^{2} \)
29 \( 1 - 2.55T + 29T^{2} \)
37 \( 1 - 7.08T + 37T^{2} \)
41 \( 1 - 0.776T + 41T^{2} \)
43 \( 1 - 11.5T + 43T^{2} \)
47 \( 1 - 11.7T + 47T^{2} \)
53 \( 1 + 5.06T + 53T^{2} \)
59 \( 1 - 13.6T + 59T^{2} \)
61 \( 1 + 10.0T + 61T^{2} \)
67 \( 1 - 8.74T + 67T^{2} \)
71 \( 1 - 8.39T + 71T^{2} \)
73 \( 1 + 5.03T + 73T^{2} \)
79 \( 1 - 4.66T + 79T^{2} \)
83 \( 1 + 10.6T + 83T^{2} \)
89 \( 1 - 2.58T + 89T^{2} \)
97 \( 1 - 13.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.868800868487013399660148510519, −8.058020941232430947558191285214, −7.32266518097829385139725045082, −6.44428386806803009342682324669, −5.62915567725190998163682474023, −4.55000235326419375386583769334, −4.13064112123562327813452905354, −3.31275075408501061653610124300, −2.35513716498028736296394983853, −0.807581902029545871889591086377, 0.807581902029545871889591086377, 2.35513716498028736296394983853, 3.31275075408501061653610124300, 4.13064112123562327813452905354, 4.55000235326419375386583769334, 5.62915567725190998163682474023, 6.44428386806803009342682324669, 7.32266518097829385139725045082, 8.058020941232430947558191285214, 8.868800868487013399660148510519

Graph of the $Z$-function along the critical line