Properties

Label 2-2883-1.1-c1-0-128
Degree $2$
Conductor $2883$
Sign $-1$
Analytic cond. $23.0208$
Root an. cond. $4.79800$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.331·2-s + 3-s − 1.89·4-s + 1.92·5-s − 0.331·6-s − 1.41·7-s + 1.28·8-s + 9-s − 0.638·10-s + 1.32·11-s − 1.89·12-s + 0.907·13-s + 0.468·14-s + 1.92·15-s + 3.35·16-s − 2.67·17-s − 0.331·18-s − 6.49·19-s − 3.64·20-s − 1.41·21-s − 0.439·22-s − 8.38·23-s + 1.28·24-s − 1.29·25-s − 0.300·26-s + 27-s + 2.67·28-s + ⋯
L(s)  = 1  − 0.234·2-s + 0.577·3-s − 0.945·4-s + 0.861·5-s − 0.135·6-s − 0.534·7-s + 0.455·8-s + 0.333·9-s − 0.201·10-s + 0.400·11-s − 0.545·12-s + 0.251·13-s + 0.125·14-s + 0.497·15-s + 0.838·16-s − 0.648·17-s − 0.0781·18-s − 1.48·19-s − 0.814·20-s − 0.308·21-s − 0.0937·22-s − 1.74·23-s + 0.263·24-s − 0.258·25-s − 0.0589·26-s + 0.192·27-s + 0.505·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2883 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2883 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2883\)    =    \(3 \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(23.0208\)
Root analytic conductor: \(4.79800\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2883,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
31 \( 1 \)
good2 \( 1 + 0.331T + 2T^{2} \)
5 \( 1 - 1.92T + 5T^{2} \)
7 \( 1 + 1.41T + 7T^{2} \)
11 \( 1 - 1.32T + 11T^{2} \)
13 \( 1 - 0.907T + 13T^{2} \)
17 \( 1 + 2.67T + 17T^{2} \)
19 \( 1 + 6.49T + 19T^{2} \)
23 \( 1 + 8.38T + 23T^{2} \)
29 \( 1 - 0.500T + 29T^{2} \)
37 \( 1 - 1.49T + 37T^{2} \)
41 \( 1 + 6.27T + 41T^{2} \)
43 \( 1 + 4.03T + 43T^{2} \)
47 \( 1 - 13.2T + 47T^{2} \)
53 \( 1 + 3.53T + 53T^{2} \)
59 \( 1 + 6.88T + 59T^{2} \)
61 \( 1 - 2.87T + 61T^{2} \)
67 \( 1 - 6.23T + 67T^{2} \)
71 \( 1 - 6.50T + 71T^{2} \)
73 \( 1 - 13.8T + 73T^{2} \)
79 \( 1 - 11.8T + 79T^{2} \)
83 \( 1 + 12.0T + 83T^{2} \)
89 \( 1 + 14.7T + 89T^{2} \)
97 \( 1 + 8.33T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.414223973943552991414325881065, −8.027093467529584944698871702060, −6.74823748513468355736056854862, −6.20275214144224372723930431586, −5.31972712474650938774486873594, −4.21631711235866999174778906401, −3.78795947803005253307893495357, −2.45883688292584344587072892095, −1.60798122038188995558302368973, 0, 1.60798122038188995558302368973, 2.45883688292584344587072892095, 3.78795947803005253307893495357, 4.21631711235866999174778906401, 5.31972712474650938774486873594, 6.20275214144224372723930431586, 6.74823748513468355736056854862, 8.027093467529584944698871702060, 8.414223973943552991414325881065

Graph of the $Z$-function along the critical line