Properties

Label 2-2883-1.1-c1-0-122
Degree $2$
Conductor $2883$
Sign $-1$
Analytic cond. $23.0208$
Root an. cond. $4.79800$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.56·2-s + 3-s + 0.446·4-s + 1.37·5-s − 1.56·6-s − 0.139·7-s + 2.43·8-s + 9-s − 2.14·10-s − 0.497·11-s + 0.446·12-s + 2.04·13-s + 0.218·14-s + 1.37·15-s − 4.69·16-s − 5.28·17-s − 1.56·18-s − 2.86·19-s + 0.612·20-s − 0.139·21-s + 0.777·22-s + 2.32·23-s + 2.43·24-s − 3.11·25-s − 3.20·26-s + 27-s − 0.0622·28-s + ⋯
L(s)  = 1  − 1.10·2-s + 0.577·3-s + 0.223·4-s + 0.613·5-s − 0.638·6-s − 0.0527·7-s + 0.859·8-s + 0.333·9-s − 0.678·10-s − 0.149·11-s + 0.128·12-s + 0.568·13-s + 0.0583·14-s + 0.354·15-s − 1.17·16-s − 1.28·17-s − 0.368·18-s − 0.658·19-s + 0.136·20-s − 0.0304·21-s + 0.165·22-s + 0.484·23-s + 0.496·24-s − 0.623·25-s − 0.628·26-s + 0.192·27-s − 0.0117·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2883 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2883 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2883\)    =    \(3 \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(23.0208\)
Root analytic conductor: \(4.79800\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2883,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
31 \( 1 \)
good2 \( 1 + 1.56T + 2T^{2} \)
5 \( 1 - 1.37T + 5T^{2} \)
7 \( 1 + 0.139T + 7T^{2} \)
11 \( 1 + 0.497T + 11T^{2} \)
13 \( 1 - 2.04T + 13T^{2} \)
17 \( 1 + 5.28T + 17T^{2} \)
19 \( 1 + 2.86T + 19T^{2} \)
23 \( 1 - 2.32T + 23T^{2} \)
29 \( 1 + 4.65T + 29T^{2} \)
37 \( 1 - 4.21T + 37T^{2} \)
41 \( 1 + 10.7T + 41T^{2} \)
43 \( 1 + 12.5T + 43T^{2} \)
47 \( 1 + 10.6T + 47T^{2} \)
53 \( 1 - 9.84T + 53T^{2} \)
59 \( 1 - 3.36T + 59T^{2} \)
61 \( 1 - 1.84T + 61T^{2} \)
67 \( 1 - 5.21T + 67T^{2} \)
71 \( 1 - 5.66T + 71T^{2} \)
73 \( 1 + 11.1T + 73T^{2} \)
79 \( 1 + 5.64T + 79T^{2} \)
83 \( 1 - 2.12T + 83T^{2} \)
89 \( 1 - 2.42T + 89T^{2} \)
97 \( 1 - 8.46T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.514752132692552960241559094556, −8.006023125717003931958130055630, −6.96104185854732040303822325572, −6.46453907923888628242014404803, −5.27586577519272883724010388534, −4.42548715653310021508403806544, −3.46692076615910286122758085885, −2.19245045346378353815098595572, −1.56251653880309234025377893516, 0, 1.56251653880309234025377893516, 2.19245045346378353815098595572, 3.46692076615910286122758085885, 4.42548715653310021508403806544, 5.27586577519272883724010388534, 6.46453907923888628242014404803, 6.96104185854732040303822325572, 8.006023125717003931958130055630, 8.514752132692552960241559094556

Graph of the $Z$-function along the critical line