Properties

Label 8-2883e4-1.1-c0e4-0-5
Degree $8$
Conductor $6.908\times 10^{13}$
Sign $1$
Analytic cond. $4.28555$
Root an. cond. $1.19950$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 4·4-s + 7-s + 9-s + 8·12-s − 13-s + 10·16-s + 19-s + 2·21-s − 2·25-s − 2·27-s + 4·28-s + 4·36-s − 37-s − 2·39-s − 43-s + 20·48-s + 49-s − 4·52-s + 2·57-s + 2·61-s + 63-s + 20·64-s + 67-s − 73-s − 4·75-s + 4·76-s + ⋯
L(s)  = 1  + 2·3-s + 4·4-s + 7-s + 9-s + 8·12-s − 13-s + 10·16-s + 19-s + 2·21-s − 2·25-s − 2·27-s + 4·28-s + 4·36-s − 37-s − 2·39-s − 43-s + 20·48-s + 49-s − 4·52-s + 2·57-s + 2·61-s + 63-s + 20·64-s + 67-s − 73-s − 4·75-s + 4·76-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 31^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 31^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 31^{8}\)
Sign: $1$
Analytic conductor: \(4.28555\)
Root analytic conductor: \(1.19950\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 31^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(11.64944597\)
\(L(\frac12)\) \(\approx\) \(11.64944597\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( ( 1 - T + T^{2} )^{2} \)
31 \( 1 \)
good2$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
5$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
7$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
11$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
13$C_4\times C_2$ \( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} \)
17$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
19$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
37$C_4\times C_2$ \( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} \)
41$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
43$C_4\times C_2$ \( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
53$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
61$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
67$C_4\times C_2$ \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \)
71$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
73$C_4\times C_2$ \( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} \)
79$C_4\times C_2$ \( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} \)
83$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
97$C_4$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.65178131888186445211632935896, −6.12984138892570850837899311394, −6.11143029717960571168313149907, −5.73446132254347911490935766187, −5.72648802451290532709877088875, −5.46752956099092504322238041429, −5.33482320956236270498058127442, −5.20005867571978764589651700069, −4.88684229121382040607593207122, −4.40805970154516567454665185292, −4.21646364595958317774311483032, −3.82051502018409079458829175889, −3.67100109962997912643688113428, −3.56664128045689956330690632641, −3.35873048892368180947563464811, −3.09894491594962057300634086381, −2.73628733802795498688653071978, −2.59370304921240172669784540960, −2.48879222199384426746535480917, −2.42699300375549371635289576143, −1.91567279256723325850775734848, −1.79132471176815784913935094854, −1.72961070521057083969756575444, −1.34881688111813669497844332958, −1.01744785319254563633680935866, 1.01744785319254563633680935866, 1.34881688111813669497844332958, 1.72961070521057083969756575444, 1.79132471176815784913935094854, 1.91567279256723325850775734848, 2.42699300375549371635289576143, 2.48879222199384426746535480917, 2.59370304921240172669784540960, 2.73628733802795498688653071978, 3.09894491594962057300634086381, 3.35873048892368180947563464811, 3.56664128045689956330690632641, 3.67100109962997912643688113428, 3.82051502018409079458829175889, 4.21646364595958317774311483032, 4.40805970154516567454665185292, 4.88684229121382040607593207122, 5.20005867571978764589651700069, 5.33482320956236270498058127442, 5.46752956099092504322238041429, 5.72648802451290532709877088875, 5.73446132254347911490935766187, 6.11143029717960571168313149907, 6.12984138892570850837899311394, 6.65178131888186445211632935896

Graph of the $Z$-function along the critical line