Properties

Label 2-2883-3.2-c0-0-3
Degree $2$
Conductor $2883$
Sign $1$
Analytic cond. $1.43880$
Root an. cond. $1.19950$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4-s + 0.618·7-s + 9-s − 12-s + 1.61·13-s + 16-s − 1.61·19-s − 0.618·21-s + 25-s − 27-s + 0.618·28-s + 36-s − 0.618·37-s − 1.61·39-s − 0.618·43-s − 48-s − 0.618·49-s + 1.61·52-s + 1.61·57-s + 1.61·61-s + 0.618·63-s + 64-s − 1.61·67-s − 0.618·73-s − 75-s − 1.61·76-s + ⋯
L(s)  = 1  − 3-s + 4-s + 0.618·7-s + 9-s − 12-s + 1.61·13-s + 16-s − 1.61·19-s − 0.618·21-s + 25-s − 27-s + 0.618·28-s + 36-s − 0.618·37-s − 1.61·39-s − 0.618·43-s − 48-s − 0.618·49-s + 1.61·52-s + 1.61·57-s + 1.61·61-s + 0.618·63-s + 64-s − 1.61·67-s − 0.618·73-s − 75-s − 1.61·76-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2883 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2883 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2883\)    =    \(3 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(1.43880\)
Root analytic conductor: \(1.19950\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2883} (962, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2883,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.332686728\)
\(L(\frac12)\) \(\approx\) \(1.332686728\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
31 \( 1 \)
good2 \( 1 - T^{2} \)
5 \( 1 - T^{2} \)
7 \( 1 - 0.618T + T^{2} \)
11 \( 1 - T^{2} \)
13 \( 1 - 1.61T + T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 + 1.61T + T^{2} \)
23 \( 1 - T^{2} \)
29 \( 1 - T^{2} \)
37 \( 1 + 0.618T + T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 + 0.618T + T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - 1.61T + T^{2} \)
67 \( 1 + 1.61T + T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + 0.618T + T^{2} \)
79 \( 1 - 1.61T + T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + 1.61T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.740196774078578981963452134182, −8.217370380470912238602091407302, −7.22824675014273878119193862736, −6.52405731234793272680150454946, −6.09139071185646666948419707896, −5.22810118261683585539336223376, −4.32145630347577758701800795383, −3.40602146691084088686369286300, −2.05229830366043015262863257275, −1.22785703232577407577625024962, 1.22785703232577407577625024962, 2.05229830366043015262863257275, 3.40602146691084088686369286300, 4.32145630347577758701800795383, 5.22810118261683585539336223376, 6.09139071185646666948419707896, 6.52405731234793272680150454946, 7.22824675014273878119193862736, 8.217370380470912238602091407302, 8.740196774078578981963452134182

Graph of the $Z$-function along the critical line