Properties

Label 4-2880e2-1.1-c1e2-0-31
Degree $4$
Conductor $8294400$
Sign $1$
Analytic cond. $528.858$
Root an. cond. $4.79550$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 8·13-s − 4·17-s + 3·25-s − 12·29-s − 16·37-s − 16·41-s + 6·49-s − 12·53-s − 20·61-s − 16·65-s + 12·73-s − 8·85-s − 8·89-s + 4·97-s + 20·101-s + 12·109-s − 28·113-s − 2·121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s − 24·145-s + 149-s + 151-s + ⋯
L(s)  = 1  + 0.894·5-s − 2.21·13-s − 0.970·17-s + 3/5·25-s − 2.22·29-s − 2.63·37-s − 2.49·41-s + 6/7·49-s − 1.64·53-s − 2.56·61-s − 1.98·65-s + 1.40·73-s − 0.867·85-s − 0.847·89-s + 0.406·97-s + 1.99·101-s + 1.14·109-s − 2.63·113-s − 0.181·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.99·145-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8294400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8294400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(8294400\)    =    \(2^{12} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(528.858\)
Root analytic conductor: \(4.79550\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 8294400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
good7$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 98 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 + 78 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.736672834619132221134147527274, −8.225638028697688497278841291987, −7.72822995983623661564723283393, −7.37118007557131887298768364978, −7.12618253426463859043892115223, −6.69287551516549112391053146887, −6.41133730696608170877034931075, −5.86206138543870870604177612763, −5.33033869973738081391347296256, −5.19492125744564010499942754511, −4.74510164876638534729548892448, −4.46560681954322177437005313439, −3.62866238101383552945045052083, −3.38371142387337403879635197901, −2.80789565732270295599809557896, −2.14218903137690434371926252108, −1.94744004862543050759831160183, −1.49670449859451459272590980544, 0, 0, 1.49670449859451459272590980544, 1.94744004862543050759831160183, 2.14218903137690434371926252108, 2.80789565732270295599809557896, 3.38371142387337403879635197901, 3.62866238101383552945045052083, 4.46560681954322177437005313439, 4.74510164876638534729548892448, 5.19492125744564010499942754511, 5.33033869973738081391347296256, 5.86206138543870870604177612763, 6.41133730696608170877034931075, 6.69287551516549112391053146887, 7.12618253426463859043892115223, 7.37118007557131887298768364978, 7.72822995983623661564723283393, 8.225638028697688497278841291987, 8.736672834619132221134147527274

Graph of the $Z$-function along the critical line