L(s) = 1 | + (0.555 − 0.831i)2-s + (−0.382 − 0.923i)4-s + (−0.831 + 0.555i)5-s + (−0.980 − 0.195i)8-s + i·10-s + (−0.707 + 0.707i)16-s + (−0.785 − 0.785i)17-s + (1.08 − 1.63i)19-s + (0.831 + 0.555i)20-s + (−0.425 − 1.02i)23-s + (0.382 − 0.923i)25-s − 1.84·31-s + (0.195 + 0.980i)32-s + (−1.08 + 0.216i)34-s + (−0.750 − 1.81i)38-s + ⋯ |
L(s) = 1 | + (0.555 − 0.831i)2-s + (−0.382 − 0.923i)4-s + (−0.831 + 0.555i)5-s + (−0.980 − 0.195i)8-s + i·10-s + (−0.707 + 0.707i)16-s + (−0.785 − 0.785i)17-s + (1.08 − 1.63i)19-s + (0.831 + 0.555i)20-s + (−0.425 − 1.02i)23-s + (0.382 − 0.923i)25-s − 1.84·31-s + (0.195 + 0.980i)32-s + (−1.08 + 0.216i)34-s + (−0.750 − 1.81i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.956 + 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.956 + 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8898797456\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8898797456\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.555 + 0.831i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.831 - 0.555i)T \) |
good | 7 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 13 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 17 | \( 1 + (0.785 + 0.785i)T + iT^{2} \) |
| 19 | \( 1 + (-1.08 + 1.63i)T + (-0.382 - 0.923i)T^{2} \) |
| 23 | \( 1 + (0.425 + 1.02i)T + (-0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 31 | \( 1 + 1.84T + T^{2} \) |
| 37 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 41 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 47 | \( 1 + (-0.275 + 0.275i)T - iT^{2} \) |
| 53 | \( 1 + (1.81 + 0.360i)T + (0.923 + 0.382i)T^{2} \) |
| 59 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 61 | \( 1 + (-0.382 + 0.0761i)T + (0.923 - 0.382i)T^{2} \) |
| 67 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 71 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 79 | \( 1 + (-1 + i)T - iT^{2} \) |
| 83 | \( 1 + (-0.636 - 0.425i)T + (0.382 + 0.923i)T^{2} \) |
| 89 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.896660550302004382422769191927, −7.80305430429244160462080134388, −6.96860325396398945600967748216, −6.39867956036978824188095497587, −5.17118632181013832685252246984, −4.65915660577112355432479692751, −3.69563600687430576954593187819, −2.97198200672937566586808348675, −2.13029353185086076312920816065, −0.45636217956892889161536858698,
1.68344106243174136352646710511, 3.35241149126426109739908691116, 3.80334333076731815355118757337, 4.66885774348180665945702048083, 5.52134996969287893972080718926, 6.10368536554321625391242157034, 7.18218092040545728164728104719, 7.76168273562099924702891196145, 8.248096255041330974930008528487, 9.120061279454497001307069079567