L(s) = 1 | + (−1.32 − 0.495i)2-s + (1.50 + 1.31i)4-s + (0.0505 + 0.0209i)5-s + (1.44 − 1.44i)7-s + (−1.35 − 2.48i)8-s + (−0.0566 − 0.0527i)10-s + (−0.320 − 0.132i)11-s + (0.623 + 1.50i)13-s + (−2.62 + 1.19i)14-s + (0.559 + 3.96i)16-s + 5.65·17-s + (4.13 − 1.71i)19-s + (0.0488 + 0.0979i)20-s + (0.359 + 0.335i)22-s + (3.03 − 3.03i)23-s + ⋯ |
L(s) = 1 | + (−0.936 − 0.350i)2-s + (0.754 + 0.655i)4-s + (0.0226 + 0.00936i)5-s + (0.544 − 0.544i)7-s + (−0.477 − 0.878i)8-s + (−0.0179 − 0.0166i)10-s + (−0.0967 − 0.0400i)11-s + (0.172 + 0.417i)13-s + (−0.701 + 0.319i)14-s + (0.139 + 0.990i)16-s + 1.37·17-s + (0.947 − 0.392i)19-s + (0.0109 + 0.0219i)20-s + (0.0766 + 0.0714i)22-s + (0.632 − 0.632i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.804 + 0.594i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.804 + 0.594i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.888337 - 0.292685i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.888337 - 0.292685i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.32 + 0.495i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-0.0505 - 0.0209i)T + (3.53 + 3.53i)T^{2} \) |
| 7 | \( 1 + (-1.44 + 1.44i)T - 7iT^{2} \) |
| 11 | \( 1 + (0.320 + 0.132i)T + (7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + (-0.623 - 1.50i)T + (-9.19 + 9.19i)T^{2} \) |
| 17 | \( 1 - 5.65T + 17T^{2} \) |
| 19 | \( 1 + (-4.13 + 1.71i)T + (13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (-3.03 + 3.03i)T - 23iT^{2} \) |
| 29 | \( 1 + (-0.721 - 1.74i)T + (-20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + 5.26iT - 31T^{2} \) |
| 37 | \( 1 + (1.32 - 3.18i)T + (-26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (-6.90 - 6.90i)T + 41iT^{2} \) |
| 43 | \( 1 + (-3.40 + 8.21i)T + (-30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 + 3.23iT - 47T^{2} \) |
| 53 | \( 1 + (0.579 - 1.40i)T + (-37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (4.21 - 10.1i)T + (-41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (12.1 - 5.03i)T + (43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + (-3.34 - 8.08i)T + (-47.3 + 47.3i)T^{2} \) |
| 71 | \( 1 + (9.36 + 9.36i)T + 71iT^{2} \) |
| 73 | \( 1 + (1.72 - 1.72i)T - 73iT^{2} \) |
| 79 | \( 1 + 15.1T + 79T^{2} \) |
| 83 | \( 1 + (-2.48 - 6.00i)T + (-58.6 + 58.6i)T^{2} \) |
| 89 | \( 1 + (2.70 - 2.70i)T - 89iT^{2} \) |
| 97 | \( 1 - 6.43T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.58310716292044174568745026653, −10.67530040224951424659184677315, −9.892093144020699397152277881733, −8.935740410403931588599343978157, −7.86777644792725580826622781205, −7.22405266664640566340471413953, −5.88722247085162938859494452819, −4.28540233720599822782089042315, −2.87758442772911573925413963477, −1.18350209934154548350522402912,
1.45478059017833768938117128095, 3.14235608104796943962940074612, 5.22807281877526674183035318843, 5.90816941460947410859003487992, 7.41427819752608587906956204552, 7.961842601135019599003265057903, 9.094061796568493562303022958401, 9.841796911227899214274363570434, 10.87225643841562107344842021303, 11.69584815039514719913421208833