Properties

Label 2-288-96.11-c1-0-6
Degree $2$
Conductor $288$
Sign $0.804 + 0.594i$
Analytic cond. $2.29969$
Root an. cond. $1.51647$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.32 − 0.495i)2-s + (1.50 + 1.31i)4-s + (0.0505 + 0.0209i)5-s + (1.44 − 1.44i)7-s + (−1.35 − 2.48i)8-s + (−0.0566 − 0.0527i)10-s + (−0.320 − 0.132i)11-s + (0.623 + 1.50i)13-s + (−2.62 + 1.19i)14-s + (0.559 + 3.96i)16-s + 5.65·17-s + (4.13 − 1.71i)19-s + (0.0488 + 0.0979i)20-s + (0.359 + 0.335i)22-s + (3.03 − 3.03i)23-s + ⋯
L(s)  = 1  + (−0.936 − 0.350i)2-s + (0.754 + 0.655i)4-s + (0.0226 + 0.00936i)5-s + (0.544 − 0.544i)7-s + (−0.477 − 0.878i)8-s + (−0.0179 − 0.0166i)10-s + (−0.0967 − 0.0400i)11-s + (0.172 + 0.417i)13-s + (−0.701 + 0.319i)14-s + (0.139 + 0.990i)16-s + 1.37·17-s + (0.947 − 0.392i)19-s + (0.0109 + 0.0219i)20-s + (0.0766 + 0.0714i)22-s + (0.632 − 0.632i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.804 + 0.594i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.804 + 0.594i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(288\)    =    \(2^{5} \cdot 3^{2}\)
Sign: $0.804 + 0.594i$
Analytic conductor: \(2.29969\)
Root analytic conductor: \(1.51647\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{288} (107, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 288,\ (\ :1/2),\ 0.804 + 0.594i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.888337 - 0.292685i\)
\(L(\frac12)\) \(\approx\) \(0.888337 - 0.292685i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.32 + 0.495i)T \)
3 \( 1 \)
good5 \( 1 + (-0.0505 - 0.0209i)T + (3.53 + 3.53i)T^{2} \)
7 \( 1 + (-1.44 + 1.44i)T - 7iT^{2} \)
11 \( 1 + (0.320 + 0.132i)T + (7.77 + 7.77i)T^{2} \)
13 \( 1 + (-0.623 - 1.50i)T + (-9.19 + 9.19i)T^{2} \)
17 \( 1 - 5.65T + 17T^{2} \)
19 \( 1 + (-4.13 + 1.71i)T + (13.4 - 13.4i)T^{2} \)
23 \( 1 + (-3.03 + 3.03i)T - 23iT^{2} \)
29 \( 1 + (-0.721 - 1.74i)T + (-20.5 + 20.5i)T^{2} \)
31 \( 1 + 5.26iT - 31T^{2} \)
37 \( 1 + (1.32 - 3.18i)T + (-26.1 - 26.1i)T^{2} \)
41 \( 1 + (-6.90 - 6.90i)T + 41iT^{2} \)
43 \( 1 + (-3.40 + 8.21i)T + (-30.4 - 30.4i)T^{2} \)
47 \( 1 + 3.23iT - 47T^{2} \)
53 \( 1 + (0.579 - 1.40i)T + (-37.4 - 37.4i)T^{2} \)
59 \( 1 + (4.21 - 10.1i)T + (-41.7 - 41.7i)T^{2} \)
61 \( 1 + (12.1 - 5.03i)T + (43.1 - 43.1i)T^{2} \)
67 \( 1 + (-3.34 - 8.08i)T + (-47.3 + 47.3i)T^{2} \)
71 \( 1 + (9.36 + 9.36i)T + 71iT^{2} \)
73 \( 1 + (1.72 - 1.72i)T - 73iT^{2} \)
79 \( 1 + 15.1T + 79T^{2} \)
83 \( 1 + (-2.48 - 6.00i)T + (-58.6 + 58.6i)T^{2} \)
89 \( 1 + (2.70 - 2.70i)T - 89iT^{2} \)
97 \( 1 - 6.43T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.58310716292044174568745026653, −10.67530040224951424659184677315, −9.892093144020699397152277881733, −8.935740410403931588599343978157, −7.86777644792725580826622781205, −7.22405266664640566340471413953, −5.88722247085162938859494452819, −4.28540233720599822782089042315, −2.87758442772911573925413963477, −1.18350209934154548350522402912, 1.45478059017833768938117128095, 3.14235608104796943962940074612, 5.22807281877526674183035318843, 5.90816941460947410859003487992, 7.41427819752608587906956204552, 7.961842601135019599003265057903, 9.094061796568493562303022958401, 9.841796911227899214274363570434, 10.87225643841562107344842021303, 11.69584815039514719913421208833

Graph of the $Z$-function along the critical line