| L(s) = 1 | + (−1.11 − 0.874i)2-s + (0.470 + 1.94i)4-s + (0.707 + 1.70i)5-s + (−0.665 + 0.665i)7-s + (1.17 − 2.57i)8-s + (0.707 − 2.51i)10-s + (−3.69 + 1.52i)11-s + (−1.76 + 4.26i)13-s + (1.32 − 0.157i)14-s + (−3.55 + 1.82i)16-s + 3.61i·17-s + (0.194 − 0.470i)19-s + (−2.98 + 2.17i)20-s + (5.44 + 1.52i)22-s + (1.33 + 1.33i)23-s + ⋯ |
| L(s) = 1 | + (−0.785 − 0.618i)2-s + (0.235 + 0.971i)4-s + (0.316 + 0.763i)5-s + (−0.251 + 0.251i)7-s + (0.416 − 0.909i)8-s + (0.223 − 0.795i)10-s + (−1.11 + 0.461i)11-s + (−0.489 + 1.18i)13-s + (0.353 − 0.0420i)14-s + (−0.889 + 0.457i)16-s + 0.877i·17-s + (0.0446 − 0.107i)19-s + (−0.667 + 0.486i)20-s + (1.16 + 0.326i)22-s + (0.278 + 0.278i)23-s + ⋯ |
Λ(s)=(=(288s/2ΓC(s)L(s)(0.378−0.925i)Λ(2−s)
Λ(s)=(=(288s/2ΓC(s+1/2)L(s)(0.378−0.925i)Λ(1−s)
| Degree: |
2 |
| Conductor: |
288
= 25⋅32
|
| Sign: |
0.378−0.925i
|
| Analytic conductor: |
2.29969 |
| Root analytic conductor: |
1.51647 |
| Motivic weight: |
1 |
| Rational: |
no |
| Arithmetic: |
yes |
| Character: |
χ288(253,⋅)
|
| Primitive: |
yes
|
| Self-dual: |
no
|
| Analytic rank: |
0
|
| Selberg data: |
(2, 288, ( :1/2), 0.378−0.925i)
|
Particular Values
| L(1) |
≈ |
0.597491+0.401124i |
| L(21) |
≈ |
0.597491+0.401124i |
| L(23) |
|
not available |
| L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
|---|
| bad | 2 | 1+(1.11+0.874i)T |
| 3 | 1 |
| good | 5 | 1+(−0.707−1.70i)T+(−3.53+3.53i)T2 |
| 7 | 1+(0.665−0.665i)T−7iT2 |
| 11 | 1+(3.69−1.52i)T+(7.77−7.77i)T2 |
| 13 | 1+(1.76−4.26i)T+(−9.19−9.19i)T2 |
| 17 | 1−3.61iT−17T2 |
| 19 | 1+(−0.194+0.470i)T+(−13.4−13.4i)T2 |
| 23 | 1+(−1.33−1.33i)T+23iT2 |
| 29 | 1+(−5.73−2.37i)T+(20.5+20.5i)T2 |
| 31 | 1−1.17T+31T2 |
| 37 | 1+(−0.510−1.23i)T+(−26.1+26.1i)T2 |
| 41 | 1+(1.66+1.66i)T+41iT2 |
| 43 | 1+(2.54−1.05i)T+(30.4−30.4i)T2 |
| 47 | 1+1.49iT−47T2 |
| 53 | 1+(4.59−1.90i)T+(37.4−37.4i)T2 |
| 59 | 1+(2.04+4.94i)T+(−41.7+41.7i)T2 |
| 61 | 1+(−13.7−5.67i)T+(43.1+43.1i)T2 |
| 67 | 1+(3.40+1.41i)T+(47.3+47.3i)T2 |
| 71 | 1+(−9.66+9.66i)T−71iT2 |
| 73 | 1+(7.55+7.55i)T+73iT2 |
| 79 | 1+17.2iT−79T2 |
| 83 | 1+(4.82−11.6i)T+(−58.6−58.6i)T2 |
| 89 | 1+(−5.43+5.43i)T−89iT2 |
| 97 | 1−6.15T+97T2 |
| show more | |
| show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.87854810487938376409365732652, −10.79669186188786204926893261562, −10.20529889652849604769146972395, −9.343699969812948096253347295944, −8.290438283054924265901317423170, −7.21859010507107691449178809492, −6.37985701421321306059155217729, −4.65435752643423736147289804763, −3.09605039857674866799324376282, −2.05635760932544635240374618518,
0.68225379284310050875371985005, 2.72500809066651800090528330797, 4.94410937368392307295986172728, 5.56594708052494927991541747953, 6.88290159247960029462522266464, 7.937669910486562797830729559554, 8.618967848842558355278417193053, 9.780361264620108704279472910955, 10.32801012290478483020963336254, 11.40935857645751610173088723884