L(s) = 1 | + (0.707 + 0.707i)2-s + (0.923 − 0.382i)3-s + 1.00i·4-s + (0.923 + 0.382i)6-s + (0.382 − 0.923i)7-s + (−0.707 + 0.707i)8-s + (0.707 − 0.707i)9-s + (0.382 + 0.923i)12-s − 1.84i·13-s + (0.923 − 0.382i)14-s − 1.00·16-s + (0.382 + 0.923i)17-s + 18-s − i·21-s + (0.707 + 0.292i)23-s + (−0.382 + 0.923i)24-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + (0.923 − 0.382i)3-s + 1.00i·4-s + (0.923 + 0.382i)6-s + (0.382 − 0.923i)7-s + (−0.707 + 0.707i)8-s + (0.707 − 0.707i)9-s + (0.382 + 0.923i)12-s − 1.84i·13-s + (0.923 − 0.382i)14-s − 1.00·16-s + (0.382 + 0.923i)17-s + 18-s − i·21-s + (0.707 + 0.292i)23-s + (−0.382 + 0.923i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.940 - 0.339i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.940 - 0.339i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.518562226\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.518562226\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 + (-0.923 + 0.382i)T \) |
| 7 | \( 1 + (-0.382 + 0.923i)T \) |
| 17 | \( 1 + (-0.382 - 0.923i)T \) |
good | 5 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 + 1.84iT - T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 + (-0.707 - 0.292i)T + (0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (0.292 + 0.707i)T + (-0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 37 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 41 | \( 1 + (0.541 - 1.30i)T + (-0.707 - 0.707i)T^{2} \) |
| 43 | \( 1 + (1 - i)T - iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (-1 - i)T + iT^{2} \) |
| 59 | \( 1 + (-1.30 + 1.30i)T - iT^{2} \) |
| 61 | \( 1 + (0.541 - 1.30i)T + (-0.707 - 0.707i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (1.70 - 0.707i)T + (0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 83 | \( 1 + (-0.541 - 0.541i)T + iT^{2} \) |
| 89 | \( 1 - 0.765iT - T^{2} \) |
| 97 | \( 1 + (0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.568912314436586350216567675768, −7.984194274985523974717765195323, −7.64144168728619246931766900673, −6.87395398881692480346491855863, −5.97063918294314929022643838569, −5.18313147984113978309458477265, −4.15608607626479624080192367864, −3.48283298388376082723542575855, −2.77055592279304228955459266956, −1.34559612303449874539630150290,
1.74379294733722196958529002577, 2.30362707657068511302976639789, 3.26181070754884745054424773844, 4.11907367054592734200560222679, 4.85747029295889143906820027851, 5.50181937440685002746432409802, 6.66606494679026542717037956938, 7.29641918838897757229291172792, 8.611049397165197008427672871928, 8.952062371346040991220260612908