L(s) = 1 | + (−0.707 + 0.707i)2-s + (0.382 − 0.923i)3-s − 1.00i·4-s + (0.382 + 0.923i)6-s + (−0.923 + 0.382i)7-s + (0.707 + 0.707i)8-s + (−0.707 − 0.707i)9-s + (−0.923 − 0.382i)12-s + 0.765i·13-s + (0.382 − 0.923i)14-s − 1.00·16-s + (−0.923 − 0.382i)17-s + 18-s + i·21-s + (−0.707 − 1.70i)23-s + (0.923 − 0.382i)24-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s + (0.382 − 0.923i)3-s − 1.00i·4-s + (0.382 + 0.923i)6-s + (−0.923 + 0.382i)7-s + (0.707 + 0.707i)8-s + (−0.707 − 0.707i)9-s + (−0.923 − 0.382i)12-s + 0.765i·13-s + (0.382 − 0.923i)14-s − 1.00·16-s + (−0.923 − 0.382i)17-s + 18-s + i·21-s + (−0.707 − 1.70i)23-s + (0.923 − 0.382i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.892 + 0.451i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.892 + 0.451i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2370986198\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2370986198\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 + (-0.382 + 0.923i)T \) |
| 7 | \( 1 + (0.923 - 0.382i)T \) |
| 17 | \( 1 + (0.923 + 0.382i)T \) |
good | 5 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 - 0.765iT - T^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 + (0.707 + 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (1.70 + 0.707i)T + (0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 37 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 41 | \( 1 + (1.30 - 0.541i)T + (0.707 - 0.707i)T^{2} \) |
| 43 | \( 1 + (1 + i)T + iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (-1 + i)T - iT^{2} \) |
| 59 | \( 1 + (0.541 + 0.541i)T + iT^{2} \) |
| 61 | \( 1 + (1.30 - 0.541i)T + (0.707 - 0.707i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (0.292 - 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 83 | \( 1 + (-1.30 + 1.30i)T - iT^{2} \) |
| 89 | \( 1 - 1.84iT - T^{2} \) |
| 97 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.724824862249093637319604385124, −7.900251602296295826798363205859, −6.95698897021102209088429287555, −6.66396205421307157446586117809, −5.98027020492223284093535768589, −5.01792094143780346947085768916, −3.80786688147358463372567366899, −2.54302617836597129746027144153, −1.80477123991750153532770393337, −0.16613707672791494726918440013,
1.77216219288162323996382783735, 2.95078405322451662265534037129, 3.52231714927019638464615089448, 4.22642601500096466954017249882, 5.28566245961116803951076121048, 6.31276178619241689983352595545, 7.33341210579778554280133155971, 7.956460661109213163792829779821, 8.857785958188969456787295653136, 9.304643269072489393522053038469