L(s) = 1 | + (0.866 − 0.5i)3-s + (0.707 − 1.22i)5-s + (−0.866 − 0.5i)7-s + (0.499 − 0.866i)9-s + (0.707 + 1.22i)11-s + 13-s − 1.41i·15-s + (0.965 + 0.258i)17-s + (0.5 − 0.866i)19-s − 0.999·21-s + (−0.707 + 1.22i)23-s + (−0.499 − 0.866i)25-s − 0.999i·27-s − 1.41·29-s + (−0.866 + 0.5i)31-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)3-s + (0.707 − 1.22i)5-s + (−0.866 − 0.5i)7-s + (0.499 − 0.866i)9-s + (0.707 + 1.22i)11-s + 13-s − 1.41i·15-s + (0.965 + 0.258i)17-s + (0.5 − 0.866i)19-s − 0.999·21-s + (−0.707 + 1.22i)23-s + (−0.499 − 0.866i)25-s − 0.999i·27-s − 1.41·29-s + (−0.866 + 0.5i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.319 + 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.319 + 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.885875729\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.885875729\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 17 | \( 1 + (-0.965 - 0.258i)T \) |
good | 5 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T + T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + 1.41T + T^{2} \) |
| 31 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (1.73 + i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.103735688433698619392643311763, −7.992814831860587457953642879959, −7.44797044935043042293960841400, −6.56798013572538800720314139388, −5.87905872579523512819166136310, −4.88126563042608490795206250363, −3.87782610492449320486302101680, −3.27377037414567176684744207613, −1.77775738317802428645452345990, −1.28320853394255197714523170300,
1.73502031277520791382498677218, 2.82099563799014491427581784068, 3.39878198789800456992711796264, 3.94240178114751674911090134193, 5.62137032435037570225507693084, 5.99277383475269521173671405836, 6.73215741533396115879124650733, 7.72637909582986875128302442962, 8.442526307538294045663257874225, 9.304590124782993330693067369860