L(s) = 1 | + (−0.866 + 0.5i)3-s + (−0.707 + 1.22i)5-s + (0.866 + 0.5i)7-s + (0.499 − 0.866i)9-s + (−0.707 − 1.22i)11-s + 13-s − 1.41i·15-s + (0.258 − 0.965i)17-s + (0.5 − 0.866i)19-s − 0.999·21-s + (0.707 − 1.22i)23-s + (−0.499 − 0.866i)25-s + 0.999i·27-s + 1.41·29-s + (0.866 − 0.5i)31-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)3-s + (−0.707 + 1.22i)5-s + (0.866 + 0.5i)7-s + (0.499 − 0.866i)9-s + (−0.707 − 1.22i)11-s + 13-s − 1.41i·15-s + (0.258 − 0.965i)17-s + (0.5 − 0.866i)19-s − 0.999·21-s + (0.707 − 1.22i)23-s + (−0.499 − 0.866i)25-s + 0.999i·27-s + 1.41·29-s + (0.866 − 0.5i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.947 - 0.319i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.947 - 0.319i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9140693350\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9140693350\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 17 | \( 1 + (-0.258 + 0.965i)T \) |
good | 5 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T + T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - 1.41T + T^{2} \) |
| 31 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-1.73 - i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.816226023516867900258263570582, −8.353986475353264443206357205675, −7.37372464828601947955951434042, −6.66339501262297345950326925766, −5.95691150463995575344318803111, −5.11450371066332101229643179725, −4.43436296629669348895250682070, −3.24543520960357508388533110072, −2.77502671536084524455265104224, −0.824662457186275872128059312635,
1.17700452929775926458350364842, 1.67937218360366227477477452300, 3.53508302917532419151076616773, 4.55226805240665878657180323909, 4.93872805387823805781737925196, 5.67909866606437561710260601275, 6.76249889898839278475743299116, 7.49476654444483465751468812516, 8.277390435049315984713304896765, 8.413340390124234442137295199636