Properties

Label 2-285-1.1-c9-0-90
Degree $2$
Conductor $285$
Sign $-1$
Analytic cond. $146.785$
Root an. cond. $12.1154$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 17.0·2-s − 81·3-s − 220.·4-s + 625·5-s + 1.38e3·6-s + 1.18e4·7-s + 1.25e4·8-s + 6.56e3·9-s − 1.06e4·10-s + 1.07e4·11-s + 1.78e4·12-s + 5.58e4·13-s − 2.01e5·14-s − 5.06e4·15-s − 1.00e5·16-s + 3.90e4·17-s − 1.12e5·18-s + 1.30e5·19-s − 1.37e5·20-s − 9.56e5·21-s − 1.83e5·22-s + 8.55e4·23-s − 1.01e6·24-s + 3.90e5·25-s − 9.52e5·26-s − 5.31e5·27-s − 2.60e6·28-s + ⋯
L(s)  = 1  − 0.754·2-s − 0.577·3-s − 0.430·4-s + 0.447·5-s + 0.435·6-s + 1.85·7-s + 1.07·8-s + 0.333·9-s − 0.337·10-s + 0.220·11-s + 0.248·12-s + 0.541·13-s − 1.40·14-s − 0.258·15-s − 0.383·16-s + 0.113·17-s − 0.251·18-s + 0.229·19-s − 0.192·20-s − 1.07·21-s − 0.166·22-s + 0.0637·23-s − 0.623·24-s + 0.200·25-s − 0.408·26-s − 0.192·27-s − 0.800·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(285\)    =    \(3 \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(146.785\)
Root analytic conductor: \(12.1154\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 285,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 81T \)
5 \( 1 - 625T \)
19 \( 1 - 1.30e5T \)
good2 \( 1 + 17.0T + 512T^{2} \)
7 \( 1 - 1.18e4T + 4.03e7T^{2} \)
11 \( 1 - 1.07e4T + 2.35e9T^{2} \)
13 \( 1 - 5.58e4T + 1.06e10T^{2} \)
17 \( 1 - 3.90e4T + 1.18e11T^{2} \)
23 \( 1 - 8.55e4T + 1.80e12T^{2} \)
29 \( 1 + 4.91e6T + 1.45e13T^{2} \)
31 \( 1 + 7.66e6T + 2.64e13T^{2} \)
37 \( 1 + 1.74e7T + 1.29e14T^{2} \)
41 \( 1 - 2.56e7T + 3.27e14T^{2} \)
43 \( 1 + 3.52e7T + 5.02e14T^{2} \)
47 \( 1 + 9.69e6T + 1.11e15T^{2} \)
53 \( 1 + 6.79e7T + 3.29e15T^{2} \)
59 \( 1 + 2.56e7T + 8.66e15T^{2} \)
61 \( 1 + 7.01e6T + 1.16e16T^{2} \)
67 \( 1 + 1.24e8T + 2.72e16T^{2} \)
71 \( 1 - 6.68e7T + 4.58e16T^{2} \)
73 \( 1 - 4.31e8T + 5.88e16T^{2} \)
79 \( 1 + 1.81e8T + 1.19e17T^{2} \)
83 \( 1 + 6.01e8T + 1.86e17T^{2} \)
89 \( 1 + 4.69e8T + 3.50e17T^{2} \)
97 \( 1 + 3.63e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.704813099796008588389995210895, −8.825992070640049593279317546746, −8.004099496012807337203738480406, −7.13901022585534496000111186533, −5.59348735833076272188069085023, −4.95455816119983495697684558294, −3.89328824620782590938347365067, −1.76452127198963063999542900463, −1.32761561269559891038024046584, 0, 1.32761561269559891038024046584, 1.76452127198963063999542900463, 3.89328824620782590938347365067, 4.95455816119983495697684558294, 5.59348735833076272188069085023, 7.13901022585534496000111186533, 8.004099496012807337203738480406, 8.825992070640049593279317546746, 9.704813099796008588389995210895

Graph of the $Z$-function along the critical line