L(s) = 1 | − 3.85i·5-s − 2.37i·7-s + 0.733i·11-s + (−2.87 + 2.17i)13-s − 4.14·17-s − 1.41i·19-s − 5.23·23-s − 9.83·25-s + 1.20·29-s + 5.01i·31-s − 9.16·35-s + 10.8i·37-s − 4.46i·41-s + 0.930·43-s − 6.57i·47-s + ⋯ |
L(s) = 1 | − 1.72i·5-s − 0.899i·7-s + 0.221i·11-s + (−0.797 + 0.602i)13-s − 1.00·17-s − 0.323i·19-s − 1.09·23-s − 1.96·25-s + 0.224·29-s + 0.900i·31-s − 1.54·35-s + 1.77i·37-s − 0.696i·41-s + 0.141·43-s − 0.959i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.602 - 0.797i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.602 - 0.797i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2468383182\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2468383182\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (2.87 - 2.17i)T \) |
good | 5 | \( 1 + 3.85iT - 5T^{2} \) |
| 7 | \( 1 + 2.37iT - 7T^{2} \) |
| 11 | \( 1 - 0.733iT - 11T^{2} \) |
| 17 | \( 1 + 4.14T + 17T^{2} \) |
| 19 | \( 1 + 1.41iT - 19T^{2} \) |
| 23 | \( 1 + 5.23T + 23T^{2} \) |
| 29 | \( 1 - 1.20T + 29T^{2} \) |
| 31 | \( 1 - 5.01iT - 31T^{2} \) |
| 37 | \( 1 - 10.8iT - 37T^{2} \) |
| 41 | \( 1 + 4.46iT - 41T^{2} \) |
| 43 | \( 1 - 0.930T + 43T^{2} \) |
| 47 | \( 1 + 6.57iT - 47T^{2} \) |
| 53 | \( 1 - 4.81T + 53T^{2} \) |
| 59 | \( 1 + 0.634iT - 59T^{2} \) |
| 61 | \( 1 + 7.96T + 61T^{2} \) |
| 67 | \( 1 + 5.70iT - 67T^{2} \) |
| 71 | \( 1 - 7.09iT - 71T^{2} \) |
| 73 | \( 1 - 7.60iT - 73T^{2} \) |
| 79 | \( 1 + 13.5T + 79T^{2} \) |
| 83 | \( 1 + 14.4iT - 83T^{2} \) |
| 89 | \( 1 - 4.41iT - 89T^{2} \) |
| 97 | \( 1 + 4.09iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.573720047906466440565745216518, −7.55268061812986618645705538976, −6.91693266344505233652248992798, −5.94508504905625753535883335468, −4.81129361399146413734188035039, −4.62024700235110221330739723969, −3.74274301119714469474339236657, −2.22677554122599879025906094638, −1.26006934137301020118809823624, −0.07750785450032449568575404426,
2.18160540469291970290273075025, 2.60525703275603645938592149964, 3.54901754696182350000497363093, 4.52441597882435092343064956439, 5.89210178221485237842826520855, 6.00735529881049972672617179915, 7.10706949846454643531208301910, 7.61843840524685960110914018916, 8.466365234116549868062158622993, 9.406246507980587948523004577697