Properties

Label 2-2808-13.12-c1-0-55
Degree $2$
Conductor $2808$
Sign $-0.602 - 0.797i$
Analytic cond. $22.4219$
Root an. cond. $4.73518$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.85i·5-s − 2.37i·7-s + 0.733i·11-s + (−2.87 + 2.17i)13-s − 4.14·17-s − 1.41i·19-s − 5.23·23-s − 9.83·25-s + 1.20·29-s + 5.01i·31-s − 9.16·35-s + 10.8i·37-s − 4.46i·41-s + 0.930·43-s − 6.57i·47-s + ⋯
L(s)  = 1  − 1.72i·5-s − 0.899i·7-s + 0.221i·11-s + (−0.797 + 0.602i)13-s − 1.00·17-s − 0.323i·19-s − 1.09·23-s − 1.96·25-s + 0.224·29-s + 0.900i·31-s − 1.54·35-s + 1.77i·37-s − 0.696i·41-s + 0.141·43-s − 0.959i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.602 - 0.797i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.602 - 0.797i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2808\)    =    \(2^{3} \cdot 3^{3} \cdot 13\)
Sign: $-0.602 - 0.797i$
Analytic conductor: \(22.4219\)
Root analytic conductor: \(4.73518\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2808} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2808,\ (\ :1/2),\ -0.602 - 0.797i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2468383182\)
\(L(\frac12)\) \(\approx\) \(0.2468383182\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + (2.87 - 2.17i)T \)
good5 \( 1 + 3.85iT - 5T^{2} \)
7 \( 1 + 2.37iT - 7T^{2} \)
11 \( 1 - 0.733iT - 11T^{2} \)
17 \( 1 + 4.14T + 17T^{2} \)
19 \( 1 + 1.41iT - 19T^{2} \)
23 \( 1 + 5.23T + 23T^{2} \)
29 \( 1 - 1.20T + 29T^{2} \)
31 \( 1 - 5.01iT - 31T^{2} \)
37 \( 1 - 10.8iT - 37T^{2} \)
41 \( 1 + 4.46iT - 41T^{2} \)
43 \( 1 - 0.930T + 43T^{2} \)
47 \( 1 + 6.57iT - 47T^{2} \)
53 \( 1 - 4.81T + 53T^{2} \)
59 \( 1 + 0.634iT - 59T^{2} \)
61 \( 1 + 7.96T + 61T^{2} \)
67 \( 1 + 5.70iT - 67T^{2} \)
71 \( 1 - 7.09iT - 71T^{2} \)
73 \( 1 - 7.60iT - 73T^{2} \)
79 \( 1 + 13.5T + 79T^{2} \)
83 \( 1 + 14.4iT - 83T^{2} \)
89 \( 1 - 4.41iT - 89T^{2} \)
97 \( 1 + 4.09iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.573720047906466440565745216518, −7.55268061812986618645705538976, −6.91693266344505233652248992798, −5.94508504905625753535883335468, −4.81129361399146413734188035039, −4.62024700235110221330739723969, −3.74274301119714469474339236657, −2.22677554122599879025906094638, −1.26006934137301020118809823624, −0.07750785450032449568575404426, 2.18160540469291970290273075025, 2.60525703275603645938592149964, 3.54901754696182350000497363093, 4.52441597882435092343064956439, 5.89210178221485237842826520855, 6.00735529881049972672617179915, 7.10706949846454643531208301910, 7.61843840524685960110914018916, 8.466365234116549868062158622993, 9.406246507980587948523004577697

Graph of the $Z$-function along the critical line