L(s) = 1 | + (−0.939 − 0.342i)2-s + (0.973 + 0.230i)3-s + (0.766 + 0.642i)4-s + (−0.238 + 1.35i)5-s + (−0.835 − 0.549i)6-s + (1.36 − 1.14i)7-s + (−0.500 − 0.866i)8-s + (0.893 + 0.448i)9-s + (0.686 − 1.18i)10-s + (0.597 + 0.802i)12-s + (−0.939 + 0.342i)13-s + (−1.67 + 0.611i)14-s + (−0.543 + 1.26i)15-s + (0.173 + 0.984i)16-s + (−0.597 + 1.03i)17-s + (−0.686 − 0.727i)18-s + ⋯ |
L(s) = 1 | + (−0.939 − 0.342i)2-s + (0.973 + 0.230i)3-s + (0.766 + 0.642i)4-s + (−0.238 + 1.35i)5-s + (−0.835 − 0.549i)6-s + (1.36 − 1.14i)7-s + (−0.500 − 0.866i)8-s + (0.893 + 0.448i)9-s + (0.686 − 1.18i)10-s + (0.597 + 0.802i)12-s + (−0.939 + 0.342i)13-s + (−1.67 + 0.611i)14-s + (−0.543 + 1.26i)15-s + (0.173 + 0.984i)16-s + (−0.597 + 1.03i)17-s + (−0.686 − 0.727i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.727 - 0.686i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.727 - 0.686i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.238457780\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.238457780\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.939 + 0.342i)T \) |
| 3 | \( 1 + (-0.973 - 0.230i)T \) |
| 13 | \( 1 + (0.939 - 0.342i)T \) |
good | 5 | \( 1 + (0.238 - 1.35i)T + (-0.939 - 0.342i)T^{2} \) |
| 7 | \( 1 + (-1.36 + 1.14i)T + (0.173 - 0.984i)T^{2} \) |
| 11 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 17 | \( 1 + (0.597 - 1.03i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 29 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 31 | \( 1 + (-1.17 - 0.984i)T + (0.173 + 0.984i)T^{2} \) |
| 37 | \( 1 + (0.973 - 1.68i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 43 | \( 1 + (0.344 + 1.95i)T + (-0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (-0.606 + 0.509i)T + (0.173 - 0.984i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 61 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 67 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 71 | \( 1 + (-0.835 + 1.44i)T + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.939 - 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.930908076734534882609630209771, −8.253988796548122583961004018188, −7.75783514653278140462977859283, −6.94914749032827507118798764772, −6.74699776428626310173123198382, −4.88217323342117933667771639520, −4.01753228867325357319580793070, −3.31090039881288723596383449851, −2.32283540282767621134263854230, −1.56809388649595537732228152707,
1.02770620646769842385205222993, 2.09718839417670034042011964697, 2.68017770848595359157709092476, 4.45541067990638157864979108417, 4.99755917416948584553293888075, 5.77890833232572161090731435533, 6.99258633657968223395152791800, 7.86163331113314279617134207729, 8.114877891180861143915730077643, 8.870018971638551566668958356516