L(s) = 1 | + (0.766 − 0.642i)2-s + (−0.0581 + 0.998i)3-s + (0.173 − 0.984i)4-s + (1.57 − 0.571i)5-s + (0.597 + 0.802i)6-s + (−0.344 − 1.95i)7-s + (−0.500 − 0.866i)8-s + (−0.993 − 0.116i)9-s + (0.835 − 1.44i)10-s + (0.973 + 0.230i)12-s + (0.766 + 0.642i)13-s + (−1.52 − 1.27i)14-s + (0.479 + 1.60i)15-s + (−0.939 − 0.342i)16-s + (−0.973 + 1.68i)17-s + (−0.835 + 0.549i)18-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)2-s + (−0.0581 + 0.998i)3-s + (0.173 − 0.984i)4-s + (1.57 − 0.571i)5-s + (0.597 + 0.802i)6-s + (−0.344 − 1.95i)7-s + (−0.500 − 0.866i)8-s + (−0.993 − 0.116i)9-s + (0.835 − 1.44i)10-s + (0.973 + 0.230i)12-s + (0.766 + 0.642i)13-s + (−1.52 − 1.27i)14-s + (0.479 + 1.60i)15-s + (−0.939 − 0.342i)16-s + (−0.973 + 1.68i)17-s + (−0.835 + 0.549i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.230 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.230 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.198423980\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.198423980\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.766 + 0.642i)T \) |
| 3 | \( 1 + (0.0581 - 0.998i)T \) |
| 13 | \( 1 + (-0.766 - 0.642i)T \) |
good | 5 | \( 1 + (-1.57 + 0.571i)T + (0.766 - 0.642i)T^{2} \) |
| 7 | \( 1 + (0.344 + 1.95i)T + (-0.939 + 0.342i)T^{2} \) |
| 11 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 17 | \( 1 + (0.973 - 1.68i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 31 | \( 1 + (-0.0603 + 0.342i)T + (-0.939 - 0.342i)T^{2} \) |
| 37 | \( 1 + (-0.0581 + 0.100i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 43 | \( 1 + (-1.28 - 0.469i)T + (0.766 + 0.642i)T^{2} \) |
| 47 | \( 1 + (0.0996 + 0.564i)T + (-0.939 + 0.342i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 61 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 67 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (0.597 - 1.03i)T + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 83 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.214762058554670344348274194939, −8.384147412986509786704604715044, −6.89093460438609377198254694268, −6.20513269164956691068052395895, −5.72002995305639610216949062659, −4.54299728566390525639188072012, −4.21658778266271182056426465961, −3.44247826820521996524265042661, −2.13043890737128858105094776602, −1.15304403333182564749535209697,
1.96631244457249156645052925446, 2.65890538929104198978692333168, 3.05389388718112398790661842465, 4.98420616083098368686106768072, 5.58888615365451877683901221214, 6.08120112238996891299459853374, 6.55615967618372082443621880976, 7.33012391680095690223819222082, 8.388503388363622567754421476526, 9.026612446436332025796169212335