L(s) = 1 | + (0.258 + 0.965i)2-s + (−0.866 + 0.499i)4-s + (−0.707 − 0.707i)8-s − i·13-s + (0.500 − 0.866i)16-s + (1.22 − 0.707i)17-s + (0.866 − 0.5i)19-s + (1.22 + 0.707i)23-s − 25-s + (0.965 − 0.258i)26-s + (−0.707 + 1.22i)29-s + 31-s + (0.965 + 0.258i)32-s + (1 + 0.999i)34-s + (0.866 + 0.5i)37-s + (0.707 + 0.707i)38-s + ⋯ |
L(s) = 1 | + (0.258 + 0.965i)2-s + (−0.866 + 0.499i)4-s + (−0.707 − 0.707i)8-s − i·13-s + (0.500 − 0.866i)16-s + (1.22 − 0.707i)17-s + (0.866 − 0.5i)19-s + (1.22 + 0.707i)23-s − 25-s + (0.965 − 0.258i)26-s + (−0.707 + 1.22i)29-s + 31-s + (0.965 + 0.258i)32-s + (1 + 0.999i)34-s + (0.866 + 0.5i)37-s + (0.707 + 0.707i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.505 - 0.862i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.505 - 0.862i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.314340673\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.314340673\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.258 - 0.965i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 5 | \( 1 + T^{2} \) |
| 7 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - T + T^{2} \) |
| 37 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 - 1.41iT - T^{2} \) |
| 53 | \( 1 + 1.41T + T^{2} \) |
| 59 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 + T + T^{2} \) |
| 83 | \( 1 - 1.41T + T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.043954276954705850761609115274, −8.126610036159923439735812622739, −7.48013232792543107858593455729, −7.03492636684555279933071996959, −5.87194487215050139791334771531, −5.38131177546474375873999268693, −4.70102707161127343196357447801, −3.45334501527198821090906291092, −2.97034609599529079434561117133, −1.02026587231404982824013366085,
1.14164366727025013572954536858, 2.16819207018575213623791876507, 3.20678841280352177865620280326, 3.98911361597986412411728505255, 4.76175134433404551008169185210, 5.70135467983343362932083160192, 6.31666602022070866052393981457, 7.51214474842431024241220448213, 8.220105038874777094821570728660, 9.058607302642620275128338481339