Properties

Label 4-2800e2-1.1-c0e2-0-1
Degree $4$
Conductor $7840000$
Sign $1$
Analytic cond. $1.95267$
Root an. cond. $1.18210$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 2·7-s − 4·8-s − 2·11-s + 4·14-s + 5·16-s + 4·22-s − 6·28-s + 2·29-s − 6·32-s + 2·37-s + 2·43-s − 6·44-s + 3·49-s + 2·53-s + 8·56-s − 4·58-s + 7·64-s + 2·67-s − 4·74-s + 4·77-s − 81-s − 4·86-s + 8·88-s − 6·98-s − 4·106-s + ⋯
L(s)  = 1  − 2·2-s + 3·4-s − 2·7-s − 4·8-s − 2·11-s + 4·14-s + 5·16-s + 4·22-s − 6·28-s + 2·29-s − 6·32-s + 2·37-s + 2·43-s − 6·44-s + 3·49-s + 2·53-s + 8·56-s − 4·58-s + 7·64-s + 2·67-s − 4·74-s + 4·77-s − 81-s − 4·86-s + 8·88-s − 6·98-s − 4·106-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7840000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7840000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(7840000\)    =    \(2^{8} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1.95267\)
Root analytic conductor: \(1.18210\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 7840000,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3156081019\)
\(L(\frac12)\) \(\approx\) \(0.3156081019\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
5 \( 1 \)
7$C_1$ \( ( 1 + T )^{2} \)
good3$C_2^2$ \( 1 + T^{4} \)
11$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
13$C_2^2$ \( 1 + T^{4} \)
17$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_2^2$ \( 1 + T^{4} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
41$C_2$ \( ( 1 + T^{2} )^{2} \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
47$C_2$ \( ( 1 + T^{2} )^{2} \)
53$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
59$C_2^2$ \( 1 + T^{4} \)
61$C_2^2$ \( 1 + T^{4} \)
67$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_2$ \( ( 1 + T^{2} )^{2} \)
83$C_2^2$ \( 1 + T^{4} \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_2$ \( ( 1 + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.200472253571314502173144251965, −8.851910939477824819076561951213, −8.430060305915447396797415858500, −8.116612011059271765159953584554, −7.61365625356703023209743777582, −7.58180308734672494215839796834, −6.88593754623943232424268765797, −6.72733974255722542258131088129, −6.33969862883068448902165895606, −5.92352991805528178600974255533, −5.47039880041512502445040689723, −5.31736595214568411602469463324, −4.26107348719692623995583089648, −3.92505069827376458488398186427, −3.11353231397606695342027140404, −2.83060586188879965332347039221, −2.51598418070910656439914318170, −2.28995185911227562548074960459, −1.04777783004992994368628790204, −0.58019927509636180084218594227, 0.58019927509636180084218594227, 1.04777783004992994368628790204, 2.28995185911227562548074960459, 2.51598418070910656439914318170, 2.83060586188879965332347039221, 3.11353231397606695342027140404, 3.92505069827376458488398186427, 4.26107348719692623995583089648, 5.31736595214568411602469463324, 5.47039880041512502445040689723, 5.92352991805528178600974255533, 6.33969862883068448902165895606, 6.72733974255722542258131088129, 6.88593754623943232424268765797, 7.58180308734672494215839796834, 7.61365625356703023209743777582, 8.116612011059271765159953584554, 8.430060305915447396797415858500, 8.851910939477824819076561951213, 9.200472253571314502173144251965

Graph of the $Z$-function along the critical line